IP Routing Commands 4

authentication - Specifies the authentication mode. If no optional parameters follow this keyword, then plain text authentication is used along with the password specified by the authentication-key. If message-digest authentication is specified, then the message-digest-key and md5 parameters must also be specified. If the null option is specified, then no authentication is performed on any OSPF routing protocol messages.

message-digest - Specifies message-digest (MD5) authentication.

null - Indicates that no authentication is used.

hello-interval seconds - Specifies the transmit delay between sending hello packets. Setting the hello interval to a smaller value can reduce the delay in detecting topological changes, but will increase the routing traffic. This value must be the same for all routers attached to an autonomous system. (Range: 1-65535 seconds; Default: 10 seconds)

retransmit-interval seconds - Specifies the interval at which the ABR retransmits link-state advertisements (LSA) over the virtual link. The retransmit interval should be set to a conservative value that provides an adequate flow of routing information, but does not produce unnecessary protocol traffic. However, note that this value should be larger for virtual links. (Range: 1-3600 seconds; Default: 5 seconds)

transmit-delay seconds - Estimates the time required to send a link-state update packet over the virtual link, considering the transmission and propagation delays. LSAs have their age incremented by this amount before transmission. This value must be the same for all routers attached to an autonomous system. (Range: 1-3600 seconds; Default: 1 seconds)

dead-interval seconds - Specifies the time that neighbor routers will wait for a hello packet before they declare the router down. This value must be the same for all routers attached to an autonomous system.

(Range: 1-65535 seconds; Default: 4 x hello interval, or 40 seconds)

authentication-key key - Sets a plain text password (up to 8 characters) that is used by neighboring routers on a virtual link to generate or verify the authentication field in protocol message headers. A separate password can be assigned to each network interface. However, this key must be the same for all neighboring routers on the same network (i.e., autonomous system). This key is only used when authentication is enabled for the backbone.

message-digest-key key-idmd5 key - Sets the key identifier and password to be used to authenticate protocol messages passed between neighboring routers and this router when using message digest (MD5) authentication. The key-idis an integer from 1-255, and the key is an alphanumeric string up to 16 characters long. If MD5 authentication is used on a virtual link, then it must be enabled on all routers within an autonomous system; and the key identifier and key must also be the same for all routers.

Command Mode

Router Configuration

4-275

Page 603
Image 603
Microsoft ES4649, ES4625 manual 275

ES4649, ES4625 specifications

The Microsoft ES4625 and ES4649 are advanced enterprise-grade servers designed to meet the demands of modern data centers. They blend cutting-edge technology with robust performance, making them an ideal choice for businesses that require reliable processing capabilities, enhanced storage solutions, and improved energy efficiency.

One of the standout features of the ES4625 is its powerful processing capability. Equipped with the latest Intel Xeon Scalable processors, the server can handle a significant workload, making it suitable for various applications, including virtualization, cloud computing, and big data analytics. The multi-core architecture allows for efficient parallel processing, thereby improving response times and overall system performance.

On the other hand, the ES4649 offers an even more powerful setup, with the option to support high core counts and a larger memory footprint. This feature is particularly beneficial for enterprises that run demanding applications requiring substantial processing power and memory capacity. Both models support DDR4 memory, ensuring faster data access and overall system efficiency.

Storage adaptability is another key characteristic of these servers. The ES4625 and ES4649 come with multiple drive bays supporting various storage options, including SSDs and traditional HDDs. This flexibility allows organizations to configure their storage according to their specific performance and capacity needs. With support for advanced storage technologies like NVMe, enterprises can achieve unparalleled data transfer speeds, which is crucial for data-intensive applications.

In terms of manageability, both models are equipped with Microsoft’s innovative management tools. The integration of these tools facilitates easy monitoring, troubleshooting, and maintenance of server health and performance, significantly reducing downtime. Moreover, the servers are designed with enhanced security features to protect against unauthorized access and data breaches, ensuring that sensitive information remains secure.

Energy efficiency is another critical characteristic of the ES4625 and ES4649. These servers are designed with power-saving technologies that reduce energy consumption without compromising performance. This aspect is particularly advantageous for businesses looking to lower their operational costs and carbon footprint.

Overall, the Microsoft ES4625 and ES4649 offer a compelling combination of performance, flexibility, and security. They are engineered to support the increasingly complex demands of modern enterprise environments, making them a valuable investment for organizations seeking reliable, high-performing server solutions. Whether for virtualized workloads, cloud services, or heavy data computations, these servers are designed to deliver exceptional results.