Table 3. Grains of Water Per Cubic Foot – Saturated Air (100% rh)

°C

°F

Grains

 

°C

°F

Grains

 

°C

°F

Grains

 

°C

°F

Grains

 

°C

°F

Grains

 

°C

°F

Grains

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

-23

-10

.29

 

4

40

2.86

 

 

58

5.41

 

 

76

9.75

 

35

95

17.28

 

 

114

29.34

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

-5

.35

 

 

41

2.97

 

 

59

5.60

 

 

77

10.06

 

 

96

17.80

 

 

115

30.13

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

-18

0

.48

 

 

42

3.08

 

16

60

5.80

 

 

78

10.40

 

 

97

18.31

 

49

120

34.38

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

8

.61

 

 

43

3.20

 

 

61

6.00

 

 

79

10.80

 

 

98

18.85

 

 

125

39.13

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

-12

10

.78

 

 

44

3.32

 

 

62

6.20

 

27

80

11.04

 

 

99

19.39

 

54

130

44.41

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

-9

15

.99

 

7

45

3.44

 

 

63

6.41

 

 

81

11.40

 

38

100

19.95

 

 

135

50.30

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

-7

20

1.24

 

 

46

3.56

 

 

64

6.62

 

 

82

11.75

 

 

101

20.52

 

60

140

56.81

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

-4

25

1.56

 

 

47

3.69

 

18

65

6.85

 

 

83

12.11

 

 

102

21.11

 

 

145

64.04

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

-1

30

1.95

 

 

48

3.83

 

 

66

7.07

 

 

84

12.49

 

 

103

21.71

 

66

150

72.00

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

31

2.04

 

 

49

3.97

 

 

67

7.31

 

29

85

12.87

 

 

104

22.32

 

 

155

80.77

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

32

2.13

 

10

50

4.11

 

 

68

7.57

 

 

86

13.27

 

41

105

22.95

 

71

160

90.43

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

33

2.21

 

 

51

4.26

 

 

69

7.80

 

 

87

13.67

 

 

106

23.60

 

 

165

101.00

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

34

2.29

 

 

52

4.41

 

21

70

8.10

 

 

88

14.08

 

 

107

24.26

 

77

170

112.60

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

35

2.38

 

 

53

4.56

 

 

71

8.32

 

 

89

14.51

 

 

108

24.93

 

 

175

125.40

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

36

2.47

 

 

54

4.72

 

 

72

8.59

 

32

90

14.94

 

 

109

25.62

 

82

180

139.20

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

37

2.56

 

13

55

4.89

 

 

73

8.87

 

 

91

15.39

 

43

110

26.34

 

 

185

154.30

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

38

2.66

 

 

56

5.06

 

 

74

9.15

 

 

92

15.84

 

 

111

27.07

 

88

190

170.70

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

39

2.76

 

 

57

5.23

 

24

75

9.45

 

 

93

16.31

 

 

112

27.81

 

 

195

188.60

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

94

16.79

 

 

113

28.57

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(2)Formula 2

Assume our printing plant is located in Denver, Colorado. From Table 4, the worst case is -10°F with 37% rh

From Table 3:

0.29 gr/ft3 x 37% rh - 0.11 gr/ft3

Combining this result with that of Moisture Required (A) we see that we will need

5.19 - 0.11 = 5.08 grains of moisture for every cubic foot of outside air brought in.

E.INCOMING AIR VOLUME

(1)The following outlines the steps necessary to determine the amount of outside air being brought into the humidified space and the corresponding amount of moisture required. There are three basic means by which outside air is introduced into the humidified space. These are:

(a)Through natural ventilation, for example, opening and closing doors and windows, and by infiltration through cracks and openings in the building construction.

(b)Through mechanical ventilation, for example, the introduction of make-up air, or the exhausting of stale air by the building HVAC system.

(c)Through the economizer section of the HVAC system - if this feature is included in the system.

(2)For maximum accuracy, all three should be estimated and the largest chosen.

10-10

Page 15 2008-10-01

Page 23
Image 23
Nortec NHTC, NHPC manual Grains of Water Per Cubic Foot Saturated Air 100% rh, Incoming AIR Volume

NHPC, NHTC specifications

The Nortec NHTC (Nortec High Temperature Charging) and NHPC (Nortec High Performance Charging) systems are cutting-edge solutions designed for optimal charging management, particularly in industrial and commercial environments. These systems are engineered to meet the high demands of battery charging, ensuring efficiency, reliability, and safety.

One of the main features of the Nortec NHTC and NHPC systems is their ability to handle a wide range of battery types and chemistries. This versatility makes them suitable for various applications, including electric vehicles, renewable energy storage, and specialized industrial equipment. The systems support lithium-ion, lead-acid, and other advanced battery technologies, enabling seamless integration into existing infrastructure.

The NHTC and NHPC systems are equipped with smart charging algorithms that dynamically adjust charging parameters based on the specific needs of the battery being charged. These algorithms monitor critical factors, such as temperature, voltage, and current, ensuring optimal charging cycles that enhance battery life and performance. Additionally, these systems feature multi-stage charging processes that maximize efficiency and reduce the risk of battery degradation.

Safety is a paramount consideration in the design of the NHTC and NHPC systems. Both systems incorporate advanced safety mechanisms, including over-voltage protection, over-current protection, and thermal management features. These safeguards prevent potential hazards, ensuring the safe operation of the charging process.

Another significant characteristic of the Nortec NHTC and NHPC systems is their user-friendly interface, which simplifies operation and monitoring. The systems come with intuitive display panels that provide real-time data on charging status, battery health, and operational efficiency. Furthermore, remote monitoring capabilities allow users to track performance metrics and troubleshoot issues from anywhere, enhancing convenience and operational efficiency.

The robust design of these charging systems ensures durability in challenging environments. Nortec's NHTC and NHPC systems are built to withstand extreme temperatures and industrial conditions, making them ideal for heavy-duty applications.

In conclusion, the Nortec NHTC and NHPC systems stand out for their versatility, intelligent charging algorithms, safety features, user-friendly interface, and robust construction. They provide a comprehensive solution for modern charging needs, making them an invaluable asset in today’s fast-evolving technological landscape. With the increasing demand for efficient and reliable charging systems, Nortec’s innovations continue to pave the way for the future of battery management.