Configurable Analog Output Overview Teledyne API Model M201E NH3 Analyzer Operator Manual

Table 3-2. Analog Output Pin-Outs

PIN

ANALOG OUTPUT

VOLTAGE SIGNAL

CURRENT SIGNAL

1

A1

V Out

I Out +

2

Ground

I Out -

 

 

 

 

 

3

A2

V Out

I Out +

 

 

 

4

Ground

I Out -

 

5

A3

V Out

I Out +

6

Ground

I Out -

 

7

A4

V Out

N/A

 

 

 

8

Ground

N/A

 

 

 

 

 

Additionally A1, A2 and A3 may be equipped with optional 0-20 mA current loop drivers. The 4-20 mA option is not available on A4.

Note: In actuality the analog output configuration of the analyzer may be different than stated above. The outputs can be configured differently at the factory depending on whether they were assigned during the procurement of the product. It is possible to check the configuration of the analyzer by accessing the ANALOG I/O CONFIGURATION through the DIAG menu.

The analyzer operates in Dual Mode during gas detection. This means each of the measured concentrations can have two separate slopes and offsets, one for the low range and one for the high range. Though uncommon, a user may decide to calibrate the analyzer with nitric oxide at, for example, 100 PPB using the LOW range and then perform another calibration at 450 PPB using the HIGH range. Through the analog outputs the user can then assign analog output A1 to TNxCNC1 and output A2 to TNxCNC2. Gases with the “1” designation use the slope and offset for the LOW range, while gases with the “2” designation will use the slope and offset for the HIGH range. It is recommended that both the LOW and HIGH ranges be calibrated at the same time. Independent of whether the HIGH range is actually being outputted to the analog outputs.

26

05206H DCN5910

Page 28
Image 28
Teledyne M201E manual Analog Output Pin-Outs

M201E specifications

The Teledyne M201E is a high-performance, compact oceanographic and environmental monitoring device designed for versatile underwater applications. Leveraging advanced technologies, the M201E presents a plethora of features appealing to researchers, engineers, and environmentalists seeking reliable data collection in challenging aquatic environments.

One of the standout characteristics of the M201E is its robust design, which allows it to operate in various underwater conditions, from shallow coastal regions to deep-sea environments. Built with durable materials, the device ensures long-term performance and resilience against corrosion, making it an ideal choice for long-term deployments.

The M201E is equipped with a range of sophisticated sensors, enabling it to collect comprehensive data on several environmental parameters. Key features include the ability to measure temperature, salinity, depth, and turbidity, among others. This multi-parameter capability allows for detailed assessments of underwater ecosystems and provides essential insights into vital oceanographic processes.

Another remarkable aspect of the M201E is its connectivity and data transmission technologies. It supports various communication protocols, enabling real-time data streaming to research teams, enhancing their ability to respond to changing conditions swiftly. The device can be integrated into larger networks of sensors, facilitating a more extensive monitoring system that collaborates and shares valuable data.

Moreover, the M201E is powered by advanced battery technologies that maximize operational longevity, allowing for extended missions without the need for frequent maintenance. Users can also benefit from intuitive user interfaces and software, streamlining the process of configuring the device, managing data, and analyzing results.

The M201E’s versatility is further demonstrated by its compatibility with various mounting options and its adaptability to different research or monitoring projects. Whether deployed by autonomous underwater vehicles (AUVs), buoys, or fixed platforms, the M201E meets diverse field requirements.

In conclusion, the Teledyne M201E stands out as a highly functional and reliable tool for underwater research. With its robust design, comprehensive sensing capabilities, advanced communications technologies, and ease of integration, it significantly contributes to our understanding of marine and freshwater environments. As the demand for precise and reliable environmental monitoring continues to grow, the M201E is poised to play a crucial role in the future of oceanographic research and environmental management.