Intel 80960HA Maximum TA at Various Airflows in C PGA Package Only, Airflow-ft/min m/sec, 600

Page 32

80960HA/HD/HT

Table 12. Maximum TA at Various Airflows in ° C (PGA Package Only)

 

 

 

 

 

Airflow-ft/min (m/sec)

 

 

 

 

 

 

 

 

 

 

 

 

 

fCLKIN

0

200

400

600

800

1000

 

 

(MHz)

(0)

(1.01)

(2.03)

(3.04)

(4.06)

(5.07)

 

 

 

 

 

 

 

 

 

 

TA with

25

69

74

78

79

80

80

 

33

63

70

75

77

79

79

Core

Heatsink

 

40

59

67

73

75

77

77

1X Bus

 

 

 

 

 

 

 

 

TA

25

64

67

71

74

75

76

Clock

 

without

33

56

62

67

70

72

74

 

Heatsink

40

50

56

63

67

69

71

 

 

 

 

 

 

 

 

 

 

TA with

16

68

73

77

79

80

80

 

25

58

66

73

75

77

77

Core

Heatsink

33

49

60

69

71

74

74

 

40

41

55

65

68

72

72

2X Bus

 

 

 

 

 

 

 

 

 

16

62

66

71

73

75

76

Clock

TA

 

25

49

56

62

66

68

71

 

without

33

38

46

55

60

63

66

 

Heatsink

 

40

27

38

48

55

58

62

 

 

 

 

 

 

 

 

 

 

 

 

TA with

20

53

63

71

73

76

76

Core

Heatsink

25

45

58

67

70

73

73

 

 

 

 

 

 

 

 

3X Bus

TA

20

43

51

58

63

66

68

Clock

without

 

25

33

42

51

58

61

64

 

Heatsink

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

† *0.285” high unidirectional heatsink (AI alloy 6061, 50 mil fin width, 150 mil center-to-center fin spacing).

Table 13. 80960Hx 168-Pin PGA Package Thermal Characteristics

Thermal Resistance — ° C/Watt

 

 

Airflow — ft./min (m/sec)

 

Parameter

 

 

 

 

 

 

0

200

400

600

800

1000

 

 

(0)

(1.01)

(2.03)

(3.07)

(4.06)

(5.07)

 

 

 

 

 

 

 

θ Junction-to-Case

 

 

 

 

 

 

(Case measured as

1.5

1.5

1.5

1.5

1.5

1.5

shown in Figure 5.)

 

 

 

 

 

 

 

 

 

 

 

 

 

θ Case-to-Ambient

17

14

11

9

8

7

(No Heatsink)

 

 

 

 

 

 

 

 

 

 

 

 

 

θ Case-to-Ambient

13

9

6

5

4

4

(With Heatsink)3

θJA

θ JC

NOTES:

1.This table applies to 80960Hx PGA plugged into socket or soldered directly to board.

2.θ JA = θ JC + θ CA

3.0.285” high unidirectional heatsink (AI alloy 6061, 50 mil fin width, 150 mil center-to-center fin spacing).

32

Datasheet

Image 32
Contents 80960HA/HD/HT 32-Bit High-Performance Superscalar Processor Datasheet Contents Contents Tables Date History80960Hx AC Characteristics on Date Revision HistoryThis page intentionally left blank Hx Product Description Product Core Voltage Operating Frequency bus/coreKey 80960Hx Features I960 Processor FamilyOn-Chip Caches and Data RAM Remaining Fail Codes bit 7 = Bit When SetFail Codes For Bist bit 7 = Comparison Branch Call/Return Fault Instruction Set SummaryHx Instruction Set Data Movement Arithmetic Logical Bit / Bit Field / ByteHA/HD/HT Package Types and Speeds Package/Name Device Core Speed Bus Speed Order # MHzPin Description Nomenclature Symbol DescriptionPin Descriptions Hx Processor Family Pin Descriptions Sheet 1 Name Type DescriptionHx Processor Family Pin Descriptions Sheet 2 SUPHx Processor Family Pin Descriptions Sheet 3 HoldHx Processor Family Pin Descriptions Sheet 4 ClkinHx 168-Pin PGA Pinout- View from Top Pins Facing Down 80960Hx Mechanical DataHx 168-Pin PGA Pinout- View from Bottom Pins Facing Up Pin Hx 168-Pin PGA Pinout- Signal Name Order Sheet 1Signal Name Hx 168-Pin PGA Pinout- Signal Name Order Sheet 2 Hx 168-Pin PGA Pinout- Pin Number Order Sheet 1 Hx 168-Pin PGA Pinout- Pin Number Order Sheet 2 I960 Hx PQ4 Pinout- Signal Name Order Sheet 1 Hx PQ4 Pinout- Signal Name Order Sheet 2 Pin Number Order Sheet 1 Pin Number Order Sheet 2 Package Thermal Specifications Equation 1. Calculation of Ambient Temperature TAHx 168-Pin PGA Package Thermal Characteristics Maximum TA at Various Airflows in C PGA Package OnlyAirflow-ft/min m/sec 600Hx 208-Pin PQ4 Package Thermal Characteristics Maximum TA at Various Airflows in C PQ4 Package OnlyThermal Resistance C/Watt Airflow ft./min m/sec Parameter 400Stepping Register Information PowerQuad4 Plastic PackageHeat Sink Adhesives Device ID Version Numbers for Different Steppings Fields of 80960Hx Device IDHx Device ID Model Types Sources for Accessories SocketsAbsolute Maximum Ratings Operating ConditionsAbsolute Maximum Ratings Operating ConditionsRecommended Connections VCC5 Pin Requirements VdiffVccpll Pin Requirements Sym Parameter Min Max UnitsSymbol Parameter Min Typ Max Units D.C.SpecificationsHx D.C. Characteristics Sheet 1 Hx D.C. Characteristics Sheet 2A.C. Specifications Hx A.C. Characteristics Sheet 1Symbol Parameter Min Max Units Input Clock 1 Synchronous Outputs 1, 2, 3Relative Input Timings 1, 7 Hx A.C. Characteristics Sheet 2Relative Output Timings 1, 2, 3, 6 C. Characteristics Notes Hx Boundary Scan Test Signal Timings1 A.C. Test Conditions A.C. Timing Waveforms Clkin WaveformOutput Float Waveform Hold Acknowledge Timings TCK Waveform Output Delay and Output Float for TBSOV1 and TBSOF1 Rise and Fall Time Derating at 85 C and Minimum VCC ICC Active Thermal vs. Frequency Output Delay vs. Temperature Bus ∼ ∼ Once Mode Reset OnceNon-Burst, Non-Pipelined Requests without Wait States Non-Burst, Non-Pipelined Read Request with Wait States Non-Burst, Non-Pipelined Write Request with Wait States BE30, Lock Blast DT/R DEN A314, SUP CT30, D/C Valid Lock Blast DT/R DEN A314, SUP Valid CT30, D/C Lock Blast DT/R DEN Wait Blast DT/R DEN Pchk Wait Blast BE30, Lock Burst, Pipelined Read Request with Wait States, 32-Bit Bus Burst, Pipelined Read Request with Wait States, 8-Bit Bus Burst, Pipelined Read Request with Wait States, 16-Bit Bus Using External Ready Terminating a Burst with Bterm Breq and Bstall Operation Clkin ADS Blast Ready Hold Functional Timing Lock Delays Holda Timing Byte Offset Word Offset 80960HA/HD/HT Summary of Aligned and Unaligned Transfers for 16-Bit Bus Summary of Aligned and Unaligned Transfers for 8-Bit Bus Idle Bus Operation Bus States Boundary Scan Cell Cell Type Comment 80960Hx Boundary Scan ChainHx Boundary Scan Chain Sheet 1 Hx Boundary Scan Chain Sheet 2 LockbarHx Boundary Scan Chain Sheet 3 NmibarHx Boundary Scan Chain Sheet 4 PchkBoundary Scan Description Language Example Adsbar Supbar E03, C02, D02, C01, E02, D01, F02, E01, F01 Bypass Input BC1 BEBAR3 XINTBAR7 80960HA/HD/HT Adsbar Adsbar Bebar Oncebar Pchkbar 100 Datasheet 101 102 Datasheet 103 104

80960HT, 80960HA, 80960HD specifications

The Intel 80960 family of microprocessors, introduced in the late 1980s, marked a significant evolution in the landscape of embedded systems and high-performance computing. The series included notable members such as the 80960HD, 80960HA, and 80960HT, each offering distinct features, technologies, and characteristics tailored for specific applications.

The Intel 80960HD was primarily designed for high-performance applications, such as real-time processing and advanced embedded control systems. With a robust architecture, the 80960HD featured a 32-bit data bus and a 32-bit address bus, enabling it to access a larger memory space and providing superior performance for computational tasks. It included a sophisticated instruction set that facilitated efficient execution, particularly for computationally intensive tasks. The internal architecture also supported pipelining, allowing multiple instructions to be processed simultaneously, thus enhancing throughput.

The 80960HA variant was tailored for high-availability applications, making it ideal for embedded systems where reliability is paramount. This model incorporated features that emphasized fault tolerance and stability, ensuring that systems relying on it could maintain operational integrity even in the event of component failures. The 80960HA showcased enhanced error detection and correction capabilities, which contributed to its reputation as a dependable choice for mission-critical applications.

On the other hand, the 80960HT was designed to meet the needs of high-performance telecommunications and networking applications. Recognized for its ability to handle multiple tasks concurrently, the 80960HT included advanced features such as built-in support for multitasking and real-time processing. This made it an excellent fit for applications that demanded rapid data handling and processing, such as routers and switches in networking environments. Its architecture allowed for efficient context switching, ensuring that multiple processes could execute seamlessly.

All three variants utilized the same family architecture, enabling easy integration and compatibility across different applications. They also supported various memory management techniques, such as virtual memory and caching, enhancing their performance in diverse operating conditions. With their combination of high processing power, reliability, and flexibility, the Intel 80960 family of microprocessors played a crucial role in advancing embedded computing technologies, paving the way for modern-day processors and systems. The 80960 series remains a noteworthy chapter in the evolution of microprocessor design, reflecting the growing demands of the computing landscape during its time.