Intel GD82559ER 10/100 Mbps CSMA/CD Unit, Eeprom Words Field Descriptions, Bits Name Description

Page 36

GD82559ER — Networkin g Silicon

Note that word 0Ah contains several configuration bits. Bits from word 0Ah, FBh through FEh, and certain bits from word 0Dh are described as follows:

 

 

 

Table 1. EEPROM Words Field Descriptions

 

 

 

 

Word

Bits

Name

Description

 

 

 

 

 

5:14

Signature

The Signature field is a signature of 01b, indicating to the 82559ER that there is

 

 

 

a valid EEPROM present. If the Signature field is not 01b, the other bits are

 

 

 

ignored and the default values are used.

 

 

 

 

 

13

Reserved

Reserved Default value is 0b.

 

 

 

 

 

12

Reserved

This bit is reserved and should be set to 0b.

 

 

 

 

 

11

Boot Disable

The Boot Disable bit disables the Expansion ROM Base Address Register (PCI

 

 

 

Configuration space, offset 30H) when it is set. Default value is 0b.

 

 

 

 

 

10:8

Revision ID

These three bits are used as the three least significant bits of the device

 

 

 

revision, if bits 15, 14, and 13 equal 011b and the ID was set as described in

 

 

 

Section 7.1.10, “PCI Subsystem Vendor ID and Subsystem ID Registers” on

 

 

 

page 53. The default value depends on the silicon revision.

 

 

 

 

A

7

Reserved

Reserved and should be set to 0b

 

 

 

Word

6

Deep Power

This bit is used as the Deep Power Down enable/disable bit. When the DPD bit

 

Down

equals 0b, deep power down is enabled in the D3 power state while PME is

 

 

disabled. If the DPD bit equals 1b, deep power down is disabled in the D3

 

 

power state while PME is disabled.

 

 

 

 

 

5

Reserved

Reserved and should be set to 0b.

 

 

 

 

 

4:3

Reserved

These are reserved and should be set to 00b.

 

 

 

 

 

2

 

 

 

 

 

 

 

1

Standby Enable

The Standby Enable bit enables the 82559ER to enter standby mode. When

 

 

 

this bit equals 1b, the 82559ER is able to recognize an idle state and can enter

 

 

 

standby mode (some internal clocks are stopped for power saving purposes).

 

 

 

The 82559ER does not require a PCI clock signal in standby mode. If this bit

 

 

 

equals 0b, the idle recognition circuit is disabled and the 82559ER always

 

 

 

remains in an active state. Thus, the 82559ER will always request PCI CLK

 

 

 

using the Clockrun mechanism.

 

 

 

 

 

0

Reserved

Set this bit equal to 0b for compatibility.

 

 

 

 

D

11:8

Reserved

Reserved.

 

 

 

 

 

 

7:0

Reserved

 

 

 

 

 

FBh -

ALL

Reserved

 

FEh

 

 

 

 

 

 

 

Note: The IA read from the EEPROM is used by the 82559ER until an IA Setup command is issued by software. The IA defined by the IA Setup command overrides the IA read from the EEPROM.

4.510/100 Mbps CSMA/CD Unit

The 82559ER CSMA/CD unit implements both the IEEE 802.3 Ethernet 10 Mbps and IEEE 802.3u Fast Ethernet 100 Mbps standards. It performs all the CSMA/CD protocol functions such as transmission, reception, collision handling, etc. The 82559ER CSMA/CD unit interfaces the internal PHY unit through a standard Media Independent Interface (MII), as specified by IEEE 802.3, Chapter 22. This is a 10/100 Mbps mode in which the data stream is nibble-wide and the serial clocks run at either 25 or 2.5 MHz.

30

Datasheet

Image 36
Contents Product Features GD82559ER Fast Ethernet PCI ControllerRevision Description Mar First releaseContents PCI Configuration Registers Electrical and Timing Specifications GD82559ER Networking Silicon Datasheet Introduction GD82559ER OverviewSuggested Reading GD82559ER Networkin g Silicon Datasheet GD82559ER Architectural Overview Parallel Subsystem OverviewFifo Subsystem Overview GD82559ER Networkin g Silicon10/100 Mbps Serial CSMA/CD Unit Overview 10/100 Mbps Physical Layer UnitGD82559ER Networkin g Silicon Datasheet Signal Descriptions Signal Type DefinitionsPCI Bus Interface Signals Address and Data SignalsInterface Control Signals Local Memory Interface Signals System and Power Management SignalsTestability Port Signals PHY Signals GD82559ER Networkin g Silicon Datasheet GD82559ER Media Access Control Functional Description 82559ER InitializationInitialization Effects on 82559ER Units D3 to D0 Software SelectiveControl/Status Register CSR Accesses PCI Interface1 82559ER Bus Operations 1.1 82559ER Bus Slave OperationCSR I/O Read Cycle Flash Buffer Accesses Flash Buffer Read CycleRetry Premature Accesses Flash Buffer Write CycleError Handling 1.2 82559ER Bus Master OperationMemory Read Burst Cycle Memory Write and Invalidate Read Align Clockrun Signal Power Management Event SignalPower States 4.1 D0 Power State4.2 D1 Power State 4.3 D2 Power State4.4 D3 Power State Understanding Power RequirementsPower State Conditions 100 Mbs 10 Mbs PCI CLKAuxiliary Power Signal Alternate Reset SignalIsolate Signal Power State Link 82559ER FunctionalityPCI Reset Signal Isolate Signal Behavior to PCI Power Good SignalWake-up Events Interestin g Packet EventsParallel Flash Interface Serial Eeprom InterfaceLink Status Change Event Word IA Byte Subsystem ID10/100 Mbps CSMA/CD Unit Eeprom Words Field DescriptionsBits Name Description ALLFull Duplex Flow ControlAddress Filtering Modifications Long Frame ReceptionMedia Independent Interface MII Management Interface Asynchronous Test Mode GD82559ER Test Port FunctionalityIntroduction Test Function DescriptionTriState Nand TreeNand Tree Chains Chain OrderSTOP# FLD2 GNT# FLD3 PERR# FLD4 PAR FLD5 FLD6FLD7 AD9GD82559ER Networkin g Silicon Datasheet GD82559ER Physical Layer Functional Description 100BASE-TX PHY Unit1 100BASE-TX Transmit Clock Generation 2 100BASE-TX Transmit Blocks2.2 100BASE-TX Scrambler and MLT-3 Encoder Invalid2.3 100BASE-TX Transmit Framing Transmit DriverMagnetics Modules Vendor Model/Type3 100BASE-TX Receive Blocks 5 100BASE-TX Link Integrity and Auto-Negotiation Solution 10BASE-T Functionality4 100BASE-TX Collision Detection Auto 10/100 Mbps Speed Selection2 10BASE-T Transmit Blocks 3 10BASE-T Receive Blocks2.1 10BASE-T Manchester Encoder 2.2 10BASE-T Driver and FilterAuto-Negotiation Functionality 4 10BASE-T Collision Detection5 10BASE-T Link Integrity 6 10BASE-T Jabber Control FunctionDescription Parallel Detect and Auto-NegotiationLED Description Auto-Negotiation and Parallel DetectTwo and Three LED Schematic Diagram Liled T L E DPCI Configuration Registers LAN Ethernet PCI Configuration SpacePCI Vendor ID and Device ID Registers PCI Command Register PCI Command Register PCI Command Register BitsPCI Status Register PCI Status Register PCI Status Register BitsPCI Revision ID Register PCI Class Code RegisterPCI Cache Line Size Register PCI Latency Timer PCI Header TypePCI Base Address Registers CSR Memory Mapped Base Address Register CSR I/O Mapped Base Address RegisterFlash Memory Mapped Base Address Register Expansion ROM Base Address RegisterPCI Subsystem Vendor ID and Subsystem ID Registers Capability PointerInterrupt Line Register ER ID Fields ProgrammingPower Management Capabilities Register Interrupt Pin RegisterMinimum Grant Register Maximum Latency RegisterPower Management Control/Status Register Pmcsr Power Management Control and Status RegisterData Register Ethernet Data RegisterData Select Data Scale Data Reported Control/Status Registers LAN Ethernet Control/Status RegistersD31 D16 D15 Lower Word OffsetSystem Control Block Status Word System Control Block Command Word System Control Block General PointerPort Flash Control RegisterReceive Direct Memory Access Byte Count Power Management Driver RegisterPower Management Driver Register Early Receive InterruptGeneral Control Register General Status RegisterGeneral Control Register General Status RegisterStatistical Counters ER Statistical CountersCounter Description Frame indicator, they are not counted GD82559ER Networking Silicon Datasheet Bits Name Description Default PHY Unit RegistersMDI Registers 0 Register 0 Control Register Bit DefinitionsRegister 1 Status Register Bit Definitions Bits Name Description Default 150 Register 2 PHY Identifier Register Bit DefinitionsRegister 3 PHY Identifier Register Bit Definitions Value 0154HMDI Registers 8 MDI Register 16100BASE-TX 10BASE-TRegister 17 PHY Unit Special Control Bit Definitions Register 22 Receive Symbol Error Counter Bit Definitions Register 18 PHY Address RegisterBits Register 23 100BASE-TX Receive Premature End of Frame Error Counter Bit DefinitionsRegister 26 Equalizer Control and Status Bit Definitions Register 27 PHY Unit Special Control Bit DefinitionsGD82559ER Networking Silicon Datasheet Electrical and Timing Specifications DC SpecificationsGeneral DC Specifications PCI Interface DC SpecificationsFlash/EEPROM Interface DC Specifications LED Voltage/Current CharacteristicsBASE-TX Voltage/Current Characteristics BASE-T Voltage/Current Characteristics Symbol ParameterVCC/2 AC Specifications AC Specifications for PCI SignalingTiming Specifications Clocks SpecificationsPCI Clock Specifications 10.4.1.2 X1 SpecificationsSymbol PCI Level Units Timing ParametersMeasurement and Test Conditions Symbol Parameter Min Max Units PCI TimingsFlash Interface Timings PCI Timing ParametersFlash Timing Parameters Eeprom Interface Timings Eeprom Timing ParametersSymbol Parameter Condition Min Typ Max Units Symbol Parameter Min Typ MaxPHY Timings BASE-T NLP Timing ParametersSymbol Parameter Condition Min Typ Max Units T64 TDP/TDN Differential HLS Data 1400 Output Peak JitterGD82559ER Networking Silicon Datasheet Package and Pinout Information Package InformationPinout Information 12.2.1 GD82559ER Pin AssignmentsGD82559ER Pin Assignments Pin NameSTOP# INTA# DEVSEL# VCC VSS PERR# GNT# VCCFLA1 FLA012.2.2 GD82559ER Ball Grid Array Diagram GD82559ER Ball Grid Array Diagram

GD82559ER specifications

The Intel GD82559ER is a highly regarded network interface controller (NIC) designed for use in various computing environments, primarily for stable connectivity in both desktop and server applications. Released as part of the 82559 family of Ethernet controllers, the GD82559ER features advanced technologies that enhance performance, reliability, and manageability.

One of the standout features of the 82559ER is its ability to support both 10/100 Mbps Ethernet. This dual capability allows the controller to operate in a wide range of network settings, making it adaptable to legacy systems while also providing support for modern Ethernet standards. This versatility is crucial for organizations looking to maintain operational effectiveness without the need for immediate upgrades to their existing infrastructure.

The GD82559ER employs a PCI interface, which allows it to connect with various devices and motherboards easily, making it a go-to choice for manufacturers aiming for integration in their systems. It also includes features like Auto-Negotiation, enabling the NIC to automatically detect and select the appropriate speed and duplex mode for optimal performance. This capability is essential in dynamic networking environments, where devices from various generations coexist.

Power management is another critical aspect of the GD82559ER. The controller supports advanced power-saving features like PCI Power Management, reducing energy consumption during low-usage periods. This not only contributes to lower operational costs but also aligns with modern eco-friendly initiatives in technology.

Additionally, the GD82559ER comes equipped with advanced diagnostics and monitoring capabilities. This enhances the network's manageability by allowing administrators to track performance metrics and diagnose issues effectively. Through its onboard diagnostics, the controller aids in ensuring a stable network connection, allowing for timely interventions when issues arise.

The controller is also designed with a robust architecture that supports various operating systems, facilitating a broad implementation across different platforms. As a result, the GD82559ER has become a reliable option for system builders and enterprises focused on building dependable networking solutions.

Overall, the Intel GD82559ER is a versatile, high-performance network interface controller that continues to serve as a foundational component for computer systems that require efficient, reliable networking capabilities. Its combination of technologies and features makes it a popular choice in diverse computing environments.