Texas Instruments TMS320x28xx, 28xxx manual Event-Trigger Interrupt Generator

Page 66

www.ti.com

Event-Trigger (ET) Submodule

The number of events that have occurred can be read from the interrupt event counter (ETPS[INTCNT]) register bits. That is, when the specified event occurs the ETPS[INTCNT] bits are incremented until they reach the value specified by ETPS[INTPRD]. When ETPS[INTCNT] = ETPS[INTPRD] the counter stops counting and its output is set. The counter is only cleared when an interrupt is sent to the PIE.

When ETPS[INTCNT] reaches ETPS[INTPRD] the one of the following behaviors will occur:

If interrupts are enabled, ETSEL[INTEN] = 1 and the interrupt flag is clear, ETFLG[INT] = 0, then an interrupt pulse is generated and the interrupt flag is set, ETFLG[INT] = 1, and the event counter is cleared ETPS[INTCNT] = 0. The counter will begin counting events again.

If interrupts are disabled, ETSEL[INTEN] = 0, or the interrupt flag is set, ETFLG[INT] = 1, the counter stops counting events when it reaches the period value ETPS[INTCNT] = ETPS[INTPRD].

If interrupts are enabled, but the interrupt flag is already set, then the counter will hold its output high until the ENTFLG[INT] flag is cleared. This allows for one interrupt to be pending while one is serviced.

Writing to the INTPRD bits will automatically clear the counter INTCNT = 0 and the counter output will be reset (so no interrupts are generated). Writing a 1 to the ETFRC[INT] bit will increment the event counter INTCNT. The counter will behave as described above when INTCNT = INTPRD. When INTPRD = 0, the counter is disabled and hence no events will be detected and the ETFRC[INT] bit is also ignored.

The above definition means that you can generate an interrupt on every event, on every second event, or on every third event. An interrupt cannot be generated on every fourth or more events.

Figure 2-41. Event-Trigger Interrupt Generator

ETCLR[INT]

EPWMxINT

Clear

 

 

Latch

 

ETFLG[INT]

Set

 

 

 

 

ETPS[INTCNT]

Generate

1

0

interrupt

 

Clear CNT

pulse

 

2-bit

when

0

Counter

input = 1

 

 

Inc CNT

ETSEL[INT]

ETPS[INTPRD]

ETSEL[INTSEL]

ETFRC[INT]

000 0

001 CTR=Zero

010 CTR=PRD

011 0

100 CTRU=CMPA

101 CTRD=CMPA

101 CTRU=CMPB

111 CTRD=CMPB

Figure 2-42shows the operation of the event-trigger's start-of-conversion-A (SOCA) pulse generator. The ETPS[SOCACNT] counter and ETPS[SOCAPRD] period values behave similarly to the interrupt generator except that the pulses are continuously generated. That is, the pulse flag ETFLG[SOCA] is latched when a pulse is generated, but it does not stop further pulse generation. The enable/disable bit ETSEL[SOCAEN] stops pulse generation, but input events can still be counted until the period value is reached as with the interrupt generation logic. The event that will trigger an SOCA and SOCB pulse can be configured separately in the ETSEL[SOCASEL] and ETSEL[SOCBSEL] bits. The possible events are the same events that can be specified for the interrupt generation logic.

66

ePWM Submodules

SPRU791D–November 2004–Revised October 2007

Image 66
Contents Reference Guide Submit Documentation Feedback Contents Controlling a 3-Phase Interleaved DC/DC Converter List of Figures Event-Trigger Socb Pulse Generator Simplified ePWM Module List of Tables Submit Documentation Feedback CPU Users Guides Related Documentation From Texas InstrumentsData Manuals Peripheral GuidesTools Guides Application ReportsTrademarks TMS320C28x, C28x are trademarks of Texas InstrumentsSubmit Documentation Feedback Introduction Introduction Submodule OverviewMultiple ePWM Modules ∙ ADC start-of-conversion signals EPWMxSOCA and EPWMxSOCB ∙ PWM output signals EPWMxA and EPWMxB∙ Trip-zone signals TZ1 to TZ6 ∙ Peripheral BusEPWM Submodules and Critical Internal Signal Interconnects Register MappingTime-Base Submodule Registers Offset Size NameDescription Counter-Compare Submodule RegistersEPWM Submodules Submodule Configuration Parameters Submodule Configuration Parameter or OptionOverview Example 2-1. Constant Definitions Used in the Code Examples TbupChpenable Time-Base TB Submodule Purpose of the Time-Base SubmoduleControlling and Monitoring the Time-base Submodule Time-Base Submodule RegistersRegister ∙ Up-Count Mode Key Time-Base Signals∙ Up-Down-Count Mode ∙ Down-Count ModeTime-Base Period Shadow Register ∙ Time-Base Period Shadow Mode∙ Time-Base Period Immediate Load Mode ∙ Active RegisterTime-Base Counter Synchronization Time-Base Counter Synchronization SchemeEPWM11SYNCI EPWM11SYNCO∙ EPWMxSYNCI Synchronization Input Pulse ∙ Software Forced Synchronization PulsePhase Locking the Time-Base Clocks of Multiple ePWM Modules Time-base Counter Modes and Timing WaveformsTime-Base Down-Count Mode Waveforms Counter-Compare CC Submodule 11. Counter-Compare SubmoduleCounter-Compare Submodule Registers Purpose of the Counter-Compare SubmoduleControlling and Monitoring the Counter-Compare Submodule Register Name Address Offset∙ Shadow Mode Count Mode Timing WaveformsCounter-Compare Submodule Key Signals ∙ Immediate Load ModeCTR=CMPA CTR=CMPBCTR = Cmpb Action-Qualifier AQ Submodule Purpose of the Action-Qualifier SubmoduleAction-Qualifier Submodule Registers ∙ Clear Low Action-Qualifier Submodule Possible Input Events∙ Set High ∙ ToggleTB Counter equals Actions 10. Action-Qualifier Event Priority for Down-Count Mode Action-Qualifier Event Priority for Up-Down-Count ModeAction-Qualifier Event Priority for Up-Count Mode Action-Qualifier Event PriorityUse up-down-count mode to generate an asymmetric PWM Waveforms for Common ConfigurationsUse up-down-count mode to generate a symmetric PWM When using up-count mode to generate an asymmetric PWM20. Up-Down-Count Mode Symmetrical Waveform Example 2-2. Code Sample for Figure TbctrValue EPWMxA EPWMxB Example 2-3. Code Sample for Figure Tbclk = SysclkoutExample 2-4. Code Sample for Figure EdgePosAExample 2-5. Code Sample for Figure Example 2-6. Code Sample for Figure TbctrExample 2-7. Code Sample for Figure EPWMxA EPWMxBControlling and Monitoring the Dead-Band Submodule Dead-Band Generator DB SubmodulePurpose of the Dead-Band Submodule 12. Dead-Band Generator Submodule Registers∙ Input Source Selection ∙ Output Mode ControlOperational Highlights for the Dead-Band Submodule ∙ Polarity ControlMode Description 13. Classical Dead-Band Operating Modes29. Dead-Band Waveforms for Typical Cases 0% Duty 100% Dead-Band Delay in μS FED = Dbfed × Ttbclk RED = Dbred × TtbclkControlling the PWM-Chopper Submodule PWM-Chopper PC SubmodulePurpose of the PWM-Chopper Submodule Operational Highlights for the PWM-Chopper SubmoduleWaveforms 31. PWM-Chopper Submodule Operational DetailsOne-Shot Pulse 16. Possible Pulse Width Values for Sysclkout = 100 MHzOSHTWTHz Duty Cycle Control PeriodTrip-Zone TZ Submodule Purpose of the Trip-Zone Submodule17. Trip-Zone Submodule Registers Controlling and Monitoring the Trip-Zone SubmoduleOperational Highlights for the Trip-Zone Submodule ∙ Cycle-by-Cycle CBCScenario a Example 2-8. Trip-Zone Configurations18. Possible Actions On a Trip Event Scenario B36. Trip-Zone Submodule Mode Control Logic Generating Trip Event InterruptsEvent-Trigger ET Submodule 37. Trip-Zone Submodule Interrupt LogicOperational Overview of the Event-Trigger Submodule 19. Event-Trigger Submodule Registers CTR=CMPB CTRD=CMPB41. Event-Trigger Interrupt Generator 42. Event-Trigger Soca Pulse Generator Submit Documentation Feedback Applications to Power Topologies Controlling Multiple Buck Converters With IndependentKey Configuration Capabilities Overview of Multiple ModulesCTR=0 EPWM1B CTR=CMPB Control of Four Buck Stages. Here FPWM1≠ FPWM2≠ FPWM3≠ FPWM4 Buck Waveforms for -3Note Only three bucks shown here Example 3-1. Configuration for Example in Figure 500Controlling Multiple Buck Converters With Same Frequencies Control of Four Buck Stages. Note FPWM2 = N x FPWM1Buck Waveforms for -5Note FPWM2 = FPWM1 Example 3-2. Code Snippet for Configuration in Figure Controlling Multiple Half H-Bridge HHB Converters Control of Two Half-H Bridge Stages FPWM2 = N x FPWM1Half-H Bridge Waveforms for -7Note Here FPWM2 = FPWM1 Controlling Dual 3-Phase Inverters for Motors ACI and Pmsm Example 3-3. Code Snippet for Configuration in FigureEPWM1A 10 -Phase Inverter Waveforms for -9Only One Inverter Shown Example 3-4. Code Snippet for Configuration in Figure 11. Configuring Two PWM Modules for Phase Control Controlling a 3-Phase Interleaved DC/DC Converter Controlling a 3-Phase Interleaved DC/DC Converter13. Control of a 3-Phase Interleaved DC/DC Converter 14 -Phase Interleaved DC/DC Converter Waveforms for Figure Example 3-5. Code Snippet for Configuration in Figure 15. Controlling a Full-H Bridge Stage FPWM2 = FPWM1 16. ZVS Full-H Bridge Waveforms Example 3-6. Code Snippet for Configuration in Figure Submit Documentation Feedback Proper Interrupt Initialization Procedure PWM-Chopper Submodule Control RegisterTrip-Zone Submodule Control and Status Registers Time-Base Period Register Tbprd Field Descriptions Time-Base Phase Register Tbphs Field DescriptionsTime-Base Submodule Registers Time-Base Counter Register Tbctr Field DescriptionsTime-Base Control Register Tbctl Field Descriptions Bit Field Value DescriptionSoftware Forced Synchronization Pulse Counter-Compare Submodule Registers Time-Base Status Register Tbsts Field DescriptionsBit Field Counter-Compare a Register Cmpa Field Descriptions Counter-Compare B Register Cmpb Field DescriptionsBits Name Description Action-Qualifier Submodule Registers Counter-Compare Control Register Cmpctl Field DescriptionsCBD CBU CAD CAU PRD ZRO Bits NameCBD 10. Action-Qualifier Output B Control Register Aqctlb Rldcsf Otsfb Actsfb Otsfa Actsfa RldcsfCsfb Csfa Dead-Band Submodule Registers CsfbInmode Polsel Outmode Inmode Name Value Description PWM-Chopper Submodule Control Register16. PWM-Chopper Control Register Pcctl Bit Descriptions ReservedTrip-Zone Submodule Control and Status Registers PWM-Chopper Control Register Pcctl Bit DescriptionsChpduty OSHT6 OSHT6 OSHT5 OSHT4 OSHT3 OSHT2 OSHT1CBC6 CBC5 CBC4 CBC3 CBC2 CBC1 CBC6TZB 18. Trip-Zone Control Register Tzctl Field DescriptionsTZB TZA OST CBC20. Trip-Zone Flag Register Tzflg Field Descriptions OST CBC INTEvent-Trigger Submodule Registers 21. Trip-Zone Clear Register Tzclr Field Descriptions22. Trip-Zone Force Register Tzfrc Field Descriptions 23. Event-Trigger Selection Register Etsel 24. Event-Trigger Prescale Register Etps Field Descriptions Name Description24. Event-Trigger Prescale Register Etps Field Descriptions Socb Soca25. Event-Trigger Flag Register Etflg Field Descriptions 26. Event-Trigger Clear Register Etclr Field DescriptionsSocb Proper Interrupt Initialization Procedure 27. Event-Trigger Force Register Etfrc Field Descriptions116 Table A-1. Changes for Revision D Location Modifications, Additions, and DeletionsAppendix a Important Notice