GE 90-70 manual Online Programming, On-Line Repair, Duplex CPU Redundancy

Page 21

1

Duplex CPU Redundancy

Only discrete blocks (or Remote I/O Scanners with only discrete modules) can be configured for Duplex CPU Redundancy mode. Blocks or I/O Scanners configured for Duplex mode receive outputs from BOTH bus controllers 30 and 31, and compare them. If devices 30 and 31 agree on an output state, the output goes to that state. If devices 30 and 31 send different states for an output, the block or I/O Scanner defaults that output to its pre-selected Duplex Default State. For example:

Commanded State

Commanded State

Duplex Default

Actual Output

from Device

from Device

State in the Block

State

Number 31

Number 30

or I/O Scanner

 

 

 

 

 

On

On

Don’ Care

On

 

 

 

 

Off

On

Off

Off

 

 

 

 

Off

Off

Don’t Care

Off

 

 

 

 

On

Off

On

On

 

 

 

 

If either device 30 or 31 stops sending outputs to the block or I/O Scanner, outputs will be directly controlled by the remaining device.

Online Programming

On-line changes to the application program are permitted in both the active unit and the backup unit. The programming device must be connected to the system in which changes are to be made in order to make any on-line changes. Note that all precautions regarding power source and grounding for connecting the programming device must be followed in accordance with instructions in the Series 90-70 Programmable Controller Installation Manual, GFK-0262.

A connection and disconnection of the parallel programmer cable should only be made with the programmer properly grounded, and programming software properly booted up and in OFF-LINE mode. For more information, refer to the Series 90-70 Programmable Controller Installation Manual, GFK-0262.

On-Line Repair

An Enhanced Hot Standby CPU Redundancy system permits online repair of failed components without disrupting the process under control. Control status of both the Primary and the Secondary units can be monitored by the LEDs on the Redundancy Communications Module in each system.

When a component of the active unit fails, control switches to the backup unit. The failed component can then be replaced after first removing power from the rack in which it is installed.

After replacement of the failed component and returning power to the rack, the backup unit resynchronizes with the currently active unit. The unit that had failed, which was previously the active unit, determines its role in the system based on configured control strategy.

Online repair is described in more detail in chapter 5.

GFK-1527A

Chapter 1 Introduction

1-13

Image 21
Contents GE Fanuc Automation GFL-002 Content of This Manual PrefaceRelated Publications Preface Contents Contents Chapter Fault Detection Appendix a Cabling Information Definition of Terms IntroductionEnhanced Hot Standby CPU Redundancy Compatibility with CPU780 Using the Redundancy CPU for Non-Redundant OperationFeatures not Available with Redundancy CPUs Redundancy CPUs as Compared to Other Series 90-70 CPUsDifferences in Operation for Redundancy CPUs Redundancy Communications Module Enhanced Redundancy CPU ModuleRedundant Racks Systems for Enhanced Hot Standby CPU RedundancyGenius I/O Local I/OCable Connections Local I/0 Can be Enhanced Hot Standby CPU Redundancy System with Local I/OControl Strategies GHS Control StrategyGDB Control Strategy Basic Enhanced Hot Standby Operation Output Control with GHSOutput Control with GDB Single Bus with Preferred Master GHS Control Strategy Basic CPU Redundancy SetupsCritical Data + Redundant Outputs Transferred Single Bus with Floating Master GDB Control StrategyPaired GBC = INT/EXT Internal External Dual Bus with Floating Master GDB Control StrategyOnline Programming On-Line RepairDuplex CPU Redundancy For Installation Instructions System ComponentsSystem Racks Redundancy CPU FeaturesWatchdog Timer CPU ArchitectureExpansion Memory Board Memory Protect Keyswitch CPU FeaturesBattery Connectors CPU LEDsPort CPU Mode SwitchUnit Select Pushbutton Redundancy Communications ModuleRCM Status Leds ConnectorConnectors Bus Transmitter ModuleBus Transmitter Module Status LEDs Bus Receiver Module Cables and TerminationBus Receiver Module Status LEDs Location of GBCs and Blocks Genius Bus ControllerDual Bus Genius Networks Single Bus Genius NetworksBus Controller LEDs Programmer Connection for Configuration Configuration RequirementsOne Application Program in Both PLCs Program Folders in Control Programming SoftwareProgram Folders in Logicmaster CPU Configuration ParametersParameter Default Range Description Configuring Shared I/O ReferencesSystem Communications Window Considerations Finding the Memory Available for Application Program StorageBus Controller Configuration Parameters Rack Module Configuration ParametersGenius I/O Block Configuration Parameters Normal Operation Powerup of a Redundant CPU Resynchronization of a Redundant CPU Incompatible ConfigurationsGDB Control Strategy GHS Control StrategyOvrpre %S Reference Not Available References for CPU RedundancySweep Time Synchronization Scan SynchronizationAT a Output Data Transfer to the Backup UnitFail Wait Time Data Transfer TimeGFK-1527A Normal Operation Data Transfer Example Programming a Data Transfer from Backup Unit to Active UnitDisabling Data Transfer Copy in Backup Unit Svcreq #43 Command Block for Svcreq #43 Backup Qualification with Svcreq #43 Validating the Backup PLCs Input ScanValidating the Backup PLCs Logic Solution Switching Times Switching Control to the Backup UnitRUN Disabled Mode RUN Disabled Mode for GHS Control StrategyExample 1 Role switches allowed on both units Example 2 Role switches allowed on both units Example 3 Role switches not allowed on either unitExample 4 Role switches allowed on both units Backup Active Example 8 Invalid RUN Disabled Mode for GDB Control StrategyCGR772 CGR935 Finding the Words to Checksum Each SweepFinding the Total Sweep Time Finding the Background Window TimeMiscellaneous Operation Information Timer and PID Function BlocksTimed Contacts Multiple I/O Scan SetsSequential Function Chart Programming SFC Stop to RUN Mode TransitionDebugger Background Window TimeGenius Bus Controller Switching Ethernet Global Data Consumption Ethernet Global Data in a Redundancy CPUSntp Timestamping Ethernet Global Data ProductionConfiguration of Fault Actions Fault DetectionFault Detection Message Fault Description Corrective Action PLC Fault Table Messages for RedundancyWith redundancy in other fault groups Fault Response Losing a Link Faulting the Redundancy Communications ModuleFault Actions in a CPU Redundancy System Fault Group Type Description Configurable FaultsFatal Faults on Both Units in the Same Sweep Non-Configurable Fault GroupOn-Line Repair Maintaining Parallel Bus Termination Power SupplyOn-Line Repair Recommendations RacksCentral Processor Unit Redundancy Communications Module and CablesRedundancy Communications Link Failures Bus Transmitter Module Single Bus Networks Bus faultsGenius Bus Controller Genius BusGenius Blocks Dual Bus NetworksCabling Information SpecificationsIC690CBL714A Multi-drop Cable PurposeConnector a Connector A, 15-pin Female Index Battery connectors Bus Controller, GeniusIndex Online programming Online repair Svcreq