GE 90-70 manual Programming a Data Transfer from Backup Unit to Active Unit, Data Transfer Example

Page 49

4

Programming a Data Transfer from Backup Unit to Active Unit

Optionally, the program logic can be used in both CPUs to transfer eight bytes (4 registers) of data from the backup unit to the active unit before the next logic solution.

o initiate this transfer, the backup unit executes SVCREQ #27 (Write to Reverse Transfer Area). his command copies eight bytes of data from the reference in the backup unit specified by the

PARM parameter. Note that SVCREQ #27 only works when its CPU is the backup unit. When its CPU is the active unit, SVCREQ #27 has no effect.

he active unit stores the transferred data in a temporary buffer. The program in the active unit must include SVCREQ #28 (Read from Reverse Transfer Area), which copies the eight bytes of data from the temporary buffer to the reference specified by the PARM parameter. SVCREQ #28 only works in the active unit. It has no effect when its CPU is the backup unit.

here is always a one-sweep delay between sending data from the backup unit using SVCREQ #27 and reading the data at the active unit using SVCREQ #28.

his data copied from the buffer is not valid in the following cases:

during the first scan after either unit has transitioned to RUN;

Twhile the backup unit is in STOP mode;

if the backup unit does not issue SVCREQ #27.

The data should not be used if REM_RDY is off or if REM_RDY is transitioning to on.

Data Transfer Example

The following rungs would be placed in the program logic of both units. In this example, the backup unit would send %P0001 through %P0004 to the active unit. The active unit would read the data into %P0005 through %P0008. %P0001 through %P0004 on the active unit and %P0005 through %P0008 on the backup unit would not change. %T0002 would be set to indicate that the operation was successful and that the data could be used.

REM_ RDY

%T00001

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

REM_ACT

CONST 00027

%P00001

%T00001

%M00001

 

 

SVC

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

REQ

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FNC

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

PARM

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

LOC_ACT

 

 

 

%T00002

 

 

 

REM_RDY

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SVC

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CONST

 

 

REQ

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FNC

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

00028

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

%P0005

 

PARM

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4-10

Series 90™-70 Enhanced Hot Standby CPU Redundancy User's Guide – May 2000

GFK-1527A

Image 49
Contents GE Fanuc Automation GFL-002 Preface Content of This ManualRelated Publications Preface Contents Contents Chapter Fault Detection Appendix a Cabling Information Definition of Terms IntroductionEnhanced Hot Standby CPU Redundancy Compatibility with CPU780 Using the Redundancy CPU for Non-Redundant OperationRedundancy CPUs as Compared to Other Series 90-70 CPUs Features not Available with Redundancy CPUsDifferences in Operation for Redundancy CPUs Redundancy Communications Module Enhanced Redundancy CPU ModuleRedundant Racks Systems for Enhanced Hot Standby CPU RedundancyLocal I/O Genius I/OCable Connections Local I/0 Can be Enhanced Hot Standby CPU Redundancy System with Local I/OGHS Control Strategy Control StrategiesGDB Control Strategy Output Control with GHS Basic Enhanced Hot Standby OperationOutput Control with GDB Single Bus with Preferred Master GHS Control Strategy Basic CPU Redundancy SetupsCritical Data + Redundant Outputs Transferred Single Bus with Floating Master GDB Control StrategyPaired GBC = INT/EXT Internal External Dual Bus with Floating Master GDB Control StrategyOn-Line Repair Online ProgrammingDuplex CPU Redundancy System Components For Installation InstructionsSystem Racks Redundancy CPU FeaturesCPU Architecture Watchdog TimerExpansion Memory Board Memory Protect Keyswitch CPU FeaturesBattery Connectors CPU LEDsPort CPU Mode SwitchUnit Select Pushbutton Redundancy Communications ModuleRCM Status Leds ConnectorBus Transmitter Module ConnectorsBus Transmitter Module Status LEDs Cables and Termination Bus Receiver ModuleBus Receiver Module Status LEDs Location of GBCs and Blocks Genius Bus ControllerDual Bus Genius Networks Single Bus Genius NetworksBus Controller LEDs Programmer Connection for Configuration Configuration RequirementsOne Application Program in Both PLCs Program Folders in Control Programming SoftwareProgram Folders in Logicmaster CPU Configuration ParametersParameter Default Range Description Configuring Shared I/O ReferencesSystem Communications Window Considerations Finding the Memory Available for Application Program StorageBus Controller Configuration Parameters Rack Module Configuration ParametersGenius I/O Block Configuration Parameters Normal Operation Powerup of a Redundant CPU Resynchronization of a Redundant CPU Incompatible ConfigurationsGDB Control Strategy GHS Control StrategyOvrpre %S Reference Not Available References for CPU RedundancySweep Time Synchronization Scan SynchronizationAT a Output Data Transfer to the Backup UnitFail Wait Time Data Transfer TimeGFK-1527A Normal Operation Data Transfer Example Programming a Data Transfer from Backup Unit to Active UnitDisabling Data Transfer Copy in Backup Unit Svcreq #43 Command Block for Svcreq #43 Validating the Backup PLCs Input Scan Backup Qualification with Svcreq #43Validating the Backup PLCs Logic Solution Switching Times Switching Control to the Backup UnitRUN Disabled Mode for GHS Control Strategy RUN Disabled ModeExample 1 Role switches allowed on both units Example 3 Role switches not allowed on either unit Example 2 Role switches allowed on both unitsExample 4 Role switches allowed on both units Backup Active Example 8 Invalid RUN Disabled Mode for GDB Control StrategyCGR772 CGR935 Finding the Words to Checksum Each SweepFinding the Total Sweep Time Finding the Background Window TimeMiscellaneous Operation Information Timer and PID Function BlocksTimed Contacts Multiple I/O Scan SetsSequential Function Chart Programming SFC Stop to RUN Mode TransitionDebugger Background Window TimeGenius Bus Controller Switching Ethernet Global Data Consumption Ethernet Global Data in a Redundancy CPUSntp Timestamping Ethernet Global Data ProductionConfiguration of Fault Actions Fault DetectionFault Detection Message Fault Description Corrective Action PLC Fault Table Messages for RedundancyWith redundancy in other fault groups Fault Response Losing a Link Faulting the Redundancy Communications ModuleFault Actions in a CPU Redundancy System Fault Group Type Description Configurable FaultsFatal Faults on Both Units in the Same Sweep Non-Configurable Fault GroupOn-Line Repair Maintaining Parallel Bus Termination Power SupplyOn-Line Repair Recommendations RacksRedundancy Communications Module and Cables Central Processor UnitRedundancy Communications Link Failures Bus Transmitter Module Single Bus Networks Bus faultsGenius Bus Controller Genius BusGenius Blocks Dual Bus NetworksCabling Information SpecificationsIC690CBL714A Multi-drop Cable PurposeConnector a Connector A, 15-pin Female Index Battery connectors Bus Controller, GeniusIndex Online programming Online repair Svcreq