GE 90-70 manual Dual Bus Networks, Genius Blocks

Page 78

5

Dual Bus Networks

For dual bus Genius networks, a single trunk cable failure will result in the blocks downstream from the failure switching to the other Genius bus. Since both busses are attached to the same Genius blocks no loss of inputs or outputs will result.

Failures in bus stubs (the portion from a BSM to its associated blocks) result in the loss of the blocks on that bus stub that are downstream from the failure. These blocks will be lost for both the active and the backup unit.

The failed Genius bus can be repaired without disturbing power to either system and thus without disturbing which PLC is in control of the process. To repair a failed trunk cable, first disconnect the failed bus from both GBCs which will cause any remaining blocks on that bus to switch to the other bus; the failed bus can then be replaced. Failure of a Genius bus stub can be done online but will result in the loss of any remaining blocks on that stub until the bus is repaired.

Genius Blocks

The failure of a single block is not fatal when the PLCs are synchronized.

If the fault action of LOSS OF OR MISSING I/O MODULE is configured to be Fatal, the failure of a single block will be fatal when the PLCs are not synchronized.

5-14

Series 90™-70 Enhanced Hot Standby CPU Redundancy User's Guide – May 2000

GFK-1527A

Image 78
Contents GE Fanuc Automation GFL-002 Content of This Manual PrefaceRelated Publications Preface Contents Contents Chapter Fault Detection Appendix a Cabling Information Introduction Definition of TermsEnhanced Hot Standby CPU Redundancy Using the Redundancy CPU for Non-Redundant Operation Compatibility with CPU780Features not Available with Redundancy CPUs Redundancy CPUs as Compared to Other Series 90-70 CPUsDifferences in Operation for Redundancy CPUs Redundant Racks Enhanced Redundancy CPU ModuleRedundancy Communications Module Systems for Enhanced Hot Standby CPU RedundancyGenius I/O Local I/OCable Connections Enhanced Hot Standby CPU Redundancy System with Local I/O Local I/0 Can beControl Strategies GHS Control StrategyGDB Control Strategy Basic Enhanced Hot Standby Operation Output Control with GHSOutput Control with GDB Basic CPU Redundancy Setups Single Bus with Preferred Master GHS Control StrategySingle Bus with Floating Master GDB Control Strategy Critical Data + Redundant Outputs TransferredDual Bus with Floating Master GDB Control Strategy Paired GBC = INT/EXT Internal ExternalOnline Programming On-Line RepairDuplex CPU Redundancy For Installation Instructions System ComponentsSystem Racks Features Redundancy CPUWatchdog Timer CPU ArchitectureExpansion Memory Board Battery Connectors CPU FeaturesMemory Protect Keyswitch CPU LEDsCPU Mode Switch PortRedundancy Communications Module Unit Select PushbuttonConnector RCM Status LedsConnectors Bus Transmitter ModuleBus Transmitter Module Status LEDs Bus Receiver Module Cables and TerminationBus Receiver Module Status LEDs Genius Bus Controller Location of GBCs and BlocksSingle Bus Genius Networks Dual Bus Genius NetworksBus Controller LEDs One Application Program in Both PLCs Configuration RequirementsProgrammer Connection for Configuration Program Folders in Control Programming SoftwareCPU Configuration Parameters Program Folders in LogicmasterConfiguring Shared I/O References Parameter Default Range DescriptionFinding the Memory Available for Application Program Storage System Communications Window ConsiderationsRack Module Configuration Parameters Bus Controller Configuration ParametersGenius I/O Block Configuration Parameters Normal Operation Powerup of a Redundant CPU Incompatible Configurations Resynchronization of a Redundant CPUGHS Control Strategy GDB Control StrategyReferences for CPU Redundancy Ovrpre %S Reference Not AvailableScan Synchronization Sweep Time SynchronizationOutput Data Transfer to the Backup Unit AT aData Transfer Time Fail Wait TimeGFK-1527A Normal Operation Programming a Data Transfer from Backup Unit to Active Unit Data Transfer ExampleDisabling Data Transfer Copy in Backup Unit Svcreq #43 Command Block for Svcreq #43 Backup Qualification with Svcreq #43 Validating the Backup PLCs Input ScanValidating the Backup PLCs Logic Solution Switching Control to the Backup Unit Switching TimesRUN Disabled Mode RUN Disabled Mode for GHS Control StrategyExample 1 Role switches allowed on both units Example 2 Role switches allowed on both units Example 3 Role switches not allowed on either unitExample 4 Role switches allowed on both units Backup Active RUN Disabled Mode for GDB Control Strategy Example 8 InvalidFinding the Words to Checksum Each Sweep CGR772 CGR935Finding the Background Window Time Finding the Total Sweep TimeTimed Contacts Timer and PID Function BlocksMiscellaneous Operation Information Multiple I/O Scan SetsDebugger Stop to RUN Mode TransitionSequential Function Chart Programming SFC Background Window TimeGenius Bus Controller Switching Ethernet Global Data in a Redundancy CPU Ethernet Global Data ConsumptionEthernet Global Data Production Sntp TimestampingFault Detection Configuration of Fault ActionsFault Detection PLC Fault Table Messages for Redundancy Message Fault Description Corrective ActionWith redundancy in other fault groups Fault Response Faulting the Redundancy Communications Module Losing a LinkFault Actions in a CPU Redundancy System Configurable Faults Fault Group Type DescriptionNon-Configurable Fault Group Fatal Faults on Both Units in the Same SweepOn-Line Repair On-Line Repair Recommendations Power SupplyMaintaining Parallel Bus Termination RacksCentral Processor Unit Redundancy Communications Module and CablesRedundancy Communications Link Failures Genius Bus Controller Single Bus Networks Bus faultsBus Transmitter Module Genius BusDual Bus Networks Genius BlocksIC690CBL714A Multi-drop Cable SpecificationsCabling Information PurposeConnector a Connector A, 15-pin Female Battery connectors Bus Controller, Genius IndexIndex Online programming Online repair Svcreq