Lincoln Electric SVM128-A Stopping the Engine, Cold Weather Starting, BREAK-IN Period

Page 23

B-9

B-9

OPERATION

Return to Section TOC

Return to Section TOC

Return to Master TOC

Return to Master TOC

STOPPING THE ENGINE

1.Remove all welding and generator power loads and let the engine cool by running it for several minutes at low idle.

2.Place the IGNITION switch in the OFF position.

When an engine is started for the first time, some of the oil will be needed to fill the passages of the lubricating system. Therefore, on initial starting, run the engine for about five minutes and then stop the engine and recheck the oil. If the level is down, fill to the full mark again.

The engine controls were properly set at the factory and should require no adjusting when received.

At the end of each day’s welding, drain accumulated dirt and water from the sediment bowl under the fuel tank and from the fuel filter per instructions in the engine manufacturer’s operating manual. Refill the fuel tank to minimize moisture condensation in the tank. Also, running out of fuel tends to draw dirt into the fuel system. Check the crankcase oil level.

In diesel engines, if the fuel supply is cut off or runs out while the fuel pump is operating, air may be entrapped in the fuel distribution system. See “How to Eliminate Air From the Fuel System” in the Maintenance section.

COLD WEATHER STARTING

When temperatures are between 10oF (-12oC) and freezing, use the standard Thermostart feature. Follow the instructions on the nameplate and in the engine manual shipped with the welder. With a fully charged battery and the proper weight oil, the engine should start satisfactorily even when the air temperature is down to about 0oF (-18°C).

If the engine is frequently started below 10oF (-12°C), you may want to remove the “Thermostart” and install the optional ether starter kit. Installation and operating instructions are included in the kit. Use ether starting only when required because excessive use shortens engine life.

It is important to follow the engine manufacturer’s rec- ommendations for oil and fuel to obtain satisfactory cold weather performance. Consult the engine manu- al and the Maintenance section of this manual.

BREAK-IN PERIOD

Any engine will use a small amount of oil during its break-in period. For the diesel engine on the SA-250, break-in is about 200 running hours.

Check the oil twice a day during break-in. Change the oil and oil filter cartridge after the first 25 hours of oper- ation. Also change the fuel filter cartridge. For more details, see the Maintenance section of this manual.

Return to Section TOC

Return to Section TOC

Return to Master TOC

Return to Master TOC

CAUTION

During break-in, subject the SA-250 to only moderate loads. Avoid long periods running at idle. Before stop- ping the engine, remove all loads and allow the engine to cool several minutes.

SA-250

Image 23
Contents SHIELD-ARCTMSA-250 SA-250 SafetyElectric Shock can kill Iii Welding Sparks can cause fire or explosionSûreté Pour Soudage a L’Arc Précautions DE SûretéMaster Table of Contents for ALL Sections Table of Contents Installation Section Technical Specifications SA-250 InstallationStoring Safety PrecautionsLocation and Ventilation PRE-OPERATION Engine Service Trailer Cooling SystemMuffler Exhaust Spark ArresterWelding Cable Connections Electrical Output ConnectionsCircuit Breakers Auxiliary Power RECEPTACLES, PLUGS, and HAND-HELD EquipmentMachine Grounding SA-250 Table of Contents Operation Section General Description Safety InstructionsOperation Operating InstructionsWelder Operational Features and ControlsDesign Features Recommended ApplicationsLimitations Welding CapabilityWELDER/GENERATOR Controls Controls and SettingsCurrent Range Selector Control of Welding CurrentFigure B.3 Diesel Engine Controls Diesel Engine ControlsCheck and fill the engine fuel tank Engine OperationBefore Starting the Engine Starting the EngineBREAK-IN Period Stopping the EngineCold Weather Starting After you finish welding Welding OperationTable B.1 Range Settings for Wire SIZE/SPEED 12B-12 Auxiliary PowerTable of Contents Accessories OPTIONS/ACCESSORIES Semiautomatic Welding Accessories TIG Welding AccessoriesConnection of the LN-7 to Connection of Lincoln Electric Wire FeedersPIN Amphenol Unused Lead Individually Connection of the LN-25 toFigure C.4 SA-250/LN-25 Across the ARC Connection Diagram Control K487-25 Table of Contents Maintenance Engine Maintenance Routine and Periodic MaintenanceFigure D.1 OIL Drain and Refill Eliminate Air from the Fuel System HOW to Eliminate AIR from the Fuel System Figure D.4 Eliminating AIR from the Fuel System Self-vent methodFigure D.5 Engine Coolant Drain Plug Figure D.6 Tightening the FAN Belt Every Daily or BeforeStarting Engine First 25-50 HoursCleaning the Battery Battery MaintenanceWELDER/GENERATOR Maintenance Idler Maintenance Figure D.5 Major Component Locations SA-250 Table of Contents Theory of Operation Section Circuits Theory of OperationALTERNATOR, and Protection Auxiliary and Field Feedback Coils Excitation FlashingEngine Idler Circuit Interpole and Series Coils Fine Current AdjustmentCurrent Range Selector Mechanical Coupling DC Generator MachinesSA-250 Table of Contents Troubleshooting & Repair Section HOW to USE Troubleshooting Guide Troubleshooting & RepairPC Board can be damaged by static electricity PC Board Troubleshooting ProceduresDetailed in the beginning of this manual Troubleshooting GuideObserve Safety Guidelines Shunt Field Winding Test Field Shunt Winding Test Output Problems Function Problems Function Problems Troubleshooting & Repair Symptoms Misadjustments Course of Action Problems Possible AreasWelding Problems Materials Needed Alternator Rotor TestTest Description Slip Rings Brushes Test ProcedureFigure F.2 Measuring Rotor Resistance Figure F.3 Measuring Rotor Resistance to Ground Field Shunt Winding Test Field Shunt Winding Test PIN TAB Idler Solenoid Test Idler Solenoid Test Engine Throttle Adjustment Test Strobe Tach Method Engine Throttle Adjustment TestOscilloscope Method Frequency Counter MethodAdjusting Screw Locking NUT Description Flashing the FieldsDo not remove brush holder ProcedureHigh Idle no Load Fine Current Control Rheostat AT Maximum Scope SettingsNormal Open Circuit Voltage Waveform 115VAC Supply Normal Open Circuit DC Weld Voltage Waveform Typical DC Weld Output Voltage Waveform Machine Loaded Selector Switch AT Maximum PositionAlternator Rotor Removal Replacement Alternator Rotor Removal ReplacementLoosen Screws Alternator Cover Slip Rings Brushes Figure F.13 Rotor Removal Replacement Alternator Stator Removal and Replacement Alternator Stator Removal ProcedureField Bridge Rectifier VAC Receptacle Circuit Breaker Genernator Brush HOLDER/COIL Cables Figure F.18 Drill Spot Locations Generator Frame Removal and Replacement See Figure F.19 for steps 4 Generator Frame RemovalFigure F.20 Wire and Selector Switch Connections Figure F.21 Case Front Removal Rope Sling ENGINE/GENERATOR Mounting Holes Troubleshooting & Repair Generator Armature Removal and Replacement Figure F.23 Blower Paddle Removal Generator Armature RemovalWelder DC Output AC Auxiliary Power Receptacle OutputRetest After Repair Engine OutputSA-250 Electrical Diagrams Section Section G SA-250 Wiring Diagram Electrical DiagramsWire Feed Module Wiring Diagram Idler PC Board M13708 Schematic Idler PC Board M13708 Components SVM Error Reporting Form

SVM128-A specifications

The Lincoln Electric SVM128-A is a cutting-edge welding machine designed to meet the demands of both professional welders and DIY enthusiasts. This versatile welding power source brings together advanced technology and robust design, making it a reliable choice for various welding applications.

One of the standout features of the SVM128-A is its capability to perform multiple welding processes. It supports MIG, TIG, and stick welding, allowing users to tackle a wide range of projects with ease. This multi-functionality makes it ideal for professionals working in different industries, as well as for hobbyists who enjoy diverse welding tasks.

The SVM128-A is equipped with inverter technology, which enhances its performance by providing a more stable arc and improved energy efficiency. This technological advancement contributes to lower operational costs and allows for a more consistent weld quality across different materials and thicknesses. Additionally, the inverter technology enables the machine to be lightweight and portable, making it convenient for jobs that require mobility.

Another prominent characteristic of the SVM128-A is its user-friendly interface. The machine features intuitive controls and a digital display that allows operators to easily set the desired welding parameters. This simplified setup helps reduce the learning curve for new users while also offering precise control for experienced professionals.

The Lincoln Electric SVM128-A is designed with durability in mind. Its robust construction ensures that it can withstand the rigors of frequent use in demanding environments. The machine is also equipped with various safety features, including thermal overload protection and a duty cycle rating that prevents overheating, ultimately extending its lifespan.

For optimal performance, the SVM128-A provides adjustable output options, allowing users to customize the welding parameters based on their specific needs. This flexibility makes it suitable for welding various metals, including steel, aluminum, and stainless steel.

In summary, the Lincoln Electric SVM128-A combines versatility, advanced technology, and a user-friendly design. With its capability to perform multiple welding processes, lightweight construction, and durable features, it stands out as an excellent option for anyone looking to achieve high-quality welds. Whether for professional or personal use, the SVM128-A is poised to deliver reliable performance and exceptional results.