Lincoln Electric SVM128-A service manual Eliminate Air from the Fuel System

Page 38

D-4

D-4

MAINTENANCE

Return to Section TOC

Return to Section TOC

TOC

Return to Master TOC

Return to Master TOC

TOC

FUEL FILTER: Inspect the fuel filter daily. Drain any accumulated water from the engine fuel filter/water separator daily. Change the fuel filter every 400 hours of operation. Dust and dirt in the fuel system can cause the injection pump and injection nozzle to wear quickly. Change the fuel filter as follows:

1.See Figure D.2. Clean the outside surfaces of the fuel filter assembly. If a drain tap (1) is fitted to the filter bowl, drain the fuel from the filter.

2.See Figure D.2. Hold the bottom cover of the filter element and release the setscrew (2) which is fitted through the filter head above the center of the ele- ment.

3.See Figure D.2. Lower the bottom cover (3) of the filter.

4.Remove the element and discard it.

5.Clean the inside surfaces of the filter head and of the cover.

6.Renew the seals and lightly lubricate them with clean fuel.

7.Put the bottom cover under the new element and hold the element squarely to the filter head. Ensure that the element is fitted in the center against the joint in the filter head. With the assembly in this position, engage and tighten the setscrew.

8.Bleed the air from the fuel system. See How to

Eliminate Air from the Fuel System.

Order Perkins fuel filter #26560017 or #26561117 from your local Perkins Service Center.

AIR CLEANER: The Perkins diesel engine is equipped with a dry type air filter. Inspect the air cleaner daily - more often in dusty conditions. Never apply oil to the air cleaner. Service the air cleaner as follows:

1.Remove the dust cup from the bottom of the air cleaner housing. Clean out any accumulated dust.

2.Loosen the wing nut and remove the filter element.

3.If dust is sticking to the dust collector element, blow compressed air through it from the inside out. Turn the element as you apply air. Air pressure should be under 686 kPa (7 kgf/cm2, 99 psi).

4.Check the element for damage before reassem- bling the air cleaner. Replace the element if it appears damaged. Order Donaldson element part number P10-1275.

Return to Section

Return to Section TOC

Return to Master

Return to Master TOC

FIGURE D.2 – FUEL FILTER REPLACEMENT

 

2

1

3

 

SA-250

Image 38
Contents SHIELD-ARCTMSA-250 Safety SA-250Electric Shock can kill Welding Sparks can cause fire or explosion IiiPrécautions DE Sûreté Sûreté Pour Soudage a L’ArcMaster Table of Contents for ALL Sections Table of Contents Installation Section Installation Technical Specifications SA-250Storing Safety PrecautionsLocation and Ventilation PRE-OPERATION Engine Service Exhaust Spark Arrester Cooling SystemMuffler TrailerElectrical Output Connections Welding Cable ConnectionsCircuit Breakers Auxiliary Power RECEPTACLES, PLUGS, and HAND-HELD EquipmentMachine Grounding SA-250 Table of Contents Operation Section Operating Instructions Safety InstructionsOperation General DescriptionRecommended Applications Operational Features and ControlsDesign Features WelderWelding Capability LimitationsControls and Settings WELDER/GENERATOR ControlsControl of Welding Current Current Range SelectorDiesel Engine Controls Figure B.3 Diesel Engine ControlsStarting the Engine Engine OperationBefore Starting the Engine Check and fill the engine fuel tankBREAK-IN Period Stopping the EngineCold Weather Starting Welding Operation After you finish weldingTable B.1 Range Settings for Wire SIZE/SPEED Auxiliary Power 12B-12Table of Contents Accessories OPTIONS/ACCESSORIES TIG Welding Accessories Semiautomatic Welding AccessoriesConnection of Lincoln Electric Wire Feeders Connection of the LN-7 toPIN Amphenol Connection of the LN-25 to Unused Lead IndividuallyFigure C.4 SA-250/LN-25 Across the ARC Connection Diagram Control K487-25 Table of Contents Maintenance Routine and Periodic Maintenance Engine MaintenanceFigure D.1 OIL Drain and Refill Eliminate Air from the Fuel System HOW to Eliminate AIR from the Fuel System Self-vent method Figure D.4 Eliminating AIR from the Fuel SystemFigure D.5 Engine Coolant Drain Plug Figure D.6 Tightening the FAN Belt First 25-50 Hours Daily or BeforeStarting Engine EveryBattery Maintenance Cleaning the BatteryWELDER/GENERATOR Maintenance Idler Maintenance Figure D.5 Major Component Locations SA-250 Table of Contents Theory of Operation Section Circuits Theory of OperationALTERNATOR, and Protection Excitation Flashing Auxiliary and Field Feedback CoilsEngine Idler Circuit Interpole and Series Coils Fine Current AdjustmentCurrent Range Selector DC Generator Machines Mechanical CouplingSA-250 Table of Contents Troubleshooting & Repair Section Troubleshooting & Repair HOW to USE Troubleshooting GuidePC Board Troubleshooting Procedures PC Board can be damaged by static electricityDetailed in the beginning of this manual Troubleshooting GuideObserve Safety Guidelines Shunt Field Winding Test Field Shunt Winding Test Output Problems Function Problems Function Problems Troubleshooting & Repair Problems Possible Areas Symptoms Misadjustments Course of ActionWelding Problems Materials Needed Alternator Rotor TestTest Description Test Procedure Slip Rings BrushesFigure F.2 Measuring Rotor Resistance Figure F.3 Measuring Rotor Resistance to Ground Field Shunt Winding Test Field Shunt Winding Test PIN TAB Idler Solenoid Test Idler Solenoid Test Engine Throttle Adjustment Test Engine Throttle Adjustment Test Strobe Tach MethodFrequency Counter Method Oscilloscope MethodAdjusting Screw Locking NUT Flashing the Fields DescriptionProcedure Do not remove brush holderHigh Idle no Load Fine Current Control Rheostat AT Maximum Scope SettingsNormal Open Circuit Voltage Waveform 115VAC Supply Normal Open Circuit DC Weld Voltage Waveform Machine Loaded Selector Switch AT Maximum Position Typical DC Weld Output Voltage WaveformAlternator Rotor Removal Replacement Replacement Alternator Rotor RemovalLoosen Screws Alternator Cover Slip Rings Brushes Figure F.13 Rotor Removal Replacement Alternator Stator Removal and Replacement Procedure Alternator Stator RemovalField Bridge Rectifier VAC Receptacle Circuit Breaker Genernator Brush HOLDER/COIL Cables Figure F.18 Drill Spot Locations Generator Frame Removal and Replacement Generator Frame Removal See Figure F.19 for steps 4Figure F.20 Wire and Selector Switch Connections Figure F.21 Case Front Removal Rope Sling ENGINE/GENERATOR Mounting Holes Troubleshooting & Repair Generator Armature Removal and Replacement Generator Armature Removal Figure F.23 Blower Paddle RemovalEngine Output AC Auxiliary Power Receptacle OutputRetest After Repair Welder DC OutputSA-250 Electrical Diagrams Section Section G SA-250 Electrical Diagrams Wiring DiagramWire Feed Module Wiring Diagram Idler PC Board M13708 Schematic Idler PC Board M13708 Components SVM Error Reporting Form

SVM128-A specifications

The Lincoln Electric SVM128-A is a cutting-edge welding machine designed to meet the demands of both professional welders and DIY enthusiasts. This versatile welding power source brings together advanced technology and robust design, making it a reliable choice for various welding applications.

One of the standout features of the SVM128-A is its capability to perform multiple welding processes. It supports MIG, TIG, and stick welding, allowing users to tackle a wide range of projects with ease. This multi-functionality makes it ideal for professionals working in different industries, as well as for hobbyists who enjoy diverse welding tasks.

The SVM128-A is equipped with inverter technology, which enhances its performance by providing a more stable arc and improved energy efficiency. This technological advancement contributes to lower operational costs and allows for a more consistent weld quality across different materials and thicknesses. Additionally, the inverter technology enables the machine to be lightweight and portable, making it convenient for jobs that require mobility.

Another prominent characteristic of the SVM128-A is its user-friendly interface. The machine features intuitive controls and a digital display that allows operators to easily set the desired welding parameters. This simplified setup helps reduce the learning curve for new users while also offering precise control for experienced professionals.

The Lincoln Electric SVM128-A is designed with durability in mind. Its robust construction ensures that it can withstand the rigors of frequent use in demanding environments. The machine is also equipped with various safety features, including thermal overload protection and a duty cycle rating that prevents overheating, ultimately extending its lifespan.

For optimal performance, the SVM128-A provides adjustable output options, allowing users to customize the welding parameters based on their specific needs. This flexibility makes it suitable for welding various metals, including steel, aluminum, and stainless steel.

In summary, the Lincoln Electric SVM128-A combines versatility, advanced technology, and a user-friendly design. With its capability to perform multiple welding processes, lightweight construction, and durable features, it stands out as an excellent option for anyone looking to achieve high-quality welds. Whether for professional or personal use, the SVM128-A is poised to deliver reliable performance and exceptional results.