Lincoln Electric SVM128-A service manual Table of Contents Theory of Operation Section

Page 49

Return to Master TOC

Return to Master TOC

Return to Master TOC

Return to Master TOC

Section E-1

Section E-1

TABLE OF CONTENTS

-THEORY OF OPERATION SECTION-

Theory of Operation

Section E

General Description

E-2

Battery, Starter, Engine Alternator, and Protection Circuits

E-2

Engine, Generator Armature and Frame, Alternator Stator and Rotor

E-3

Excitation (Flashing)

E-3

Auxiliary and Field Feedback Coils

E-3

Interpole and Series Coils

E-4

Current Range Selector

E-4

Fine Current Adjustment

E-4

Engine Idler Circuit

E-4

DC Generator Machines

E-5

 

PROTECTION

 

 

 

SELECTOR

 

 

 

 

 

RELAY

 

 

 

 

 

 

 

 

 

 

 

 

SWITCH

 

 

 

 

 

 

 

 

 

 

 

 

REED

 

 

 

 

IDLER

 

 

 

 

 

RELAY

NEGATIVE

 

 

BOARD

 

 

 

 

 

CR2

 

 

 

 

 

 

 

 

 

 

OUTPUT

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TERMINAL

 

 

 

 

 

 

 

 

115 & 230VAC

 

 

 

 

 

 

 

 

 

 

RECEPTACLES

 

 

 

 

IDLER

 

 

 

 

 

 

 

 

 

SOLENOID

 

 

 

 

 

 

 

 

 

OIL

 

 

GENERATOR

 

 

 

 

 

TEMPERATURE

PRESSURE

 

 

 

FRAME

 

 

 

 

 

GAUGE

SWITCH

 

 

 

 

 

CURRENT

 

 

FUEL

 

 

SERIES

 

 

 

 

 

 

INJECTION

 

 

COILS

 

 

 

 

TRANSFORMER

 

 

PUMP

 

 

 

 

 

 

 

 

 

 

 

 

 

 

BRUSHES & COMMUTATOR

 

ALTERNATOR

STATOR

 

SWITCH

ENGINE

 

 

ARMATURE

 

 

SLIP

 

 

 

ENGINE

MECHANICAL

GENERATOR

 

ARMATURE

ROTOR

 

 

IGNITION

 

 

COUPLING

 

 

 

SHAFT

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ALTERNATOR

 

 

 

 

 

 

 

RINGS

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

INTERPOLE

 

 

 

 

 

 

 

 

 

COILS

RESIDUAL

 

 

 

 

 

 

STARTER

 

 

MAGNETISM

FLASHING

 

 

 

 

 

 

 

 

 

 

 

 

 

 

MOTOR

 

 

FIELD

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SHUNT

 

 

 

 

 

 

 

 

 

WINDINGS

 

 

 

 

 

 

 

 

 

 

 

 

FIELD

 

 

 

BATTERY

 

 

 

 

 

RECTIFIER

 

 

 

 

 

 

 

GENERATOR

 

 

 

 

 

 

 

 

 

FIELD CONTROL

 

 

 

POSITIVE

OUTPUT

TERMINAL

FIGURE E.1 – SA-250 BLOCK LOGIC DIAGRAM

SA-250

Image 49
Contents SHIELD-ARCTMSA-250 SA-250 SafetyElectric Shock can kill Iii Welding Sparks can cause fire or explosionSûreté Pour Soudage a L’Arc Précautions DE SûretéMaster Table of Contents for ALL Sections Table of Contents Installation Section Technical Specifications SA-250 InstallationLocation and Ventilation Safety PrecautionsStoring PRE-OPERATION Engine Service Muffler Cooling SystemExhaust Spark Arrester TrailerWelding Cable Connections Electrical Output ConnectionsMachine Grounding Auxiliary Power RECEPTACLES, PLUGS, and HAND-HELD EquipmentCircuit Breakers SA-250 Table of Contents Operation Section Operation Safety InstructionsOperating Instructions General DescriptionDesign Features Operational Features and ControlsRecommended Applications WelderLimitations Welding CapabilityWELDER/GENERATOR Controls Controls and SettingsCurrent Range Selector Control of Welding CurrentFigure B.3 Diesel Engine Controls Diesel Engine ControlsBefore Starting the Engine Engine OperationStarting the Engine Check and fill the engine fuel tankCold Weather Starting Stopping the EngineBREAK-IN Period After you finish welding Welding OperationTable B.1 Range Settings for Wire SIZE/SPEED 12B-12 Auxiliary PowerTable of Contents Accessories OPTIONS/ACCESSORIES Semiautomatic Welding Accessories TIG Welding AccessoriesConnection of the LN-7 to Connection of Lincoln Electric Wire FeedersPIN Amphenol Unused Lead Individually Connection of the LN-25 toFigure C.4 SA-250/LN-25 Across the ARC Connection Diagram Control K487-25 Table of Contents Maintenance Engine Maintenance Routine and Periodic MaintenanceFigure D.1 OIL Drain and Refill Eliminate Air from the Fuel System HOW to Eliminate AIR from the Fuel System Figure D.4 Eliminating AIR from the Fuel System Self-vent methodFigure D.5 Engine Coolant Drain Plug Figure D.6 Tightening the FAN Belt Starting Engine Daily or BeforeFirst 25-50 Hours EveryCleaning the Battery Battery MaintenanceWELDER/GENERATOR Maintenance Idler Maintenance Figure D.5 Major Component Locations SA-250 Table of Contents Theory of Operation Section ALTERNATOR, and Protection Theory of OperationCircuits Auxiliary and Field Feedback Coils Excitation FlashingCurrent Range Selector Interpole and Series Coils Fine Current AdjustmentEngine Idler Circuit Mechanical Coupling DC Generator MachinesSA-250 Table of Contents Troubleshooting & Repair Section HOW to USE Troubleshooting Guide Troubleshooting & RepairPC Board can be damaged by static electricity PC Board Troubleshooting ProceduresObserve Safety Guidelines Troubleshooting GuideDetailed in the beginning of this manual Shunt Field Winding Test Field Shunt Winding Test Output Problems Function Problems Function Problems Troubleshooting & Repair Symptoms Misadjustments Course of Action Problems Possible AreasWelding Problems Test Description Alternator Rotor TestMaterials Needed Slip Rings Brushes Test ProcedureFigure F.2 Measuring Rotor Resistance Figure F.3 Measuring Rotor Resistance to Ground Field Shunt Winding Test Field Shunt Winding Test PIN TAB Idler Solenoid Test Idler Solenoid Test Engine Throttle Adjustment Test Strobe Tach Method Engine Throttle Adjustment TestOscilloscope Method Frequency Counter MethodAdjusting Screw Locking NUT Description Flashing the FieldsDo not remove brush holder ProcedureNormal Open Circuit Voltage Waveform 115VAC Supply Scope SettingsHigh Idle no Load Fine Current Control Rheostat AT Maximum Normal Open Circuit DC Weld Voltage Waveform Typical DC Weld Output Voltage Waveform Machine Loaded Selector Switch AT Maximum PositionAlternator Rotor Removal Replacement Alternator Rotor Removal ReplacementLoosen Screws Alternator Cover Slip Rings Brushes Figure F.13 Rotor Removal Replacement Alternator Stator Removal and Replacement Alternator Stator Removal ProcedureField Bridge Rectifier VAC Receptacle Circuit Breaker Genernator Brush HOLDER/COIL Cables Figure F.18 Drill Spot Locations Generator Frame Removal and Replacement See Figure F.19 for steps 4 Generator Frame RemovalFigure F.20 Wire and Selector Switch Connections Figure F.21 Case Front Removal Rope Sling ENGINE/GENERATOR Mounting Holes Troubleshooting & Repair Generator Armature Removal and Replacement Figure F.23 Blower Paddle Removal Generator Armature RemovalRetest After Repair AC Auxiliary Power Receptacle OutputEngine Output Welder DC OutputSA-250 Electrical Diagrams Section Section G SA-250 Wiring Diagram Electrical DiagramsWire Feed Module Wiring Diagram Idler PC Board M13708 Schematic Idler PC Board M13708 Components SVM Error Reporting Form

SVM128-A specifications

The Lincoln Electric SVM128-A is a cutting-edge welding machine designed to meet the demands of both professional welders and DIY enthusiasts. This versatile welding power source brings together advanced technology and robust design, making it a reliable choice for various welding applications.

One of the standout features of the SVM128-A is its capability to perform multiple welding processes. It supports MIG, TIG, and stick welding, allowing users to tackle a wide range of projects with ease. This multi-functionality makes it ideal for professionals working in different industries, as well as for hobbyists who enjoy diverse welding tasks.

The SVM128-A is equipped with inverter technology, which enhances its performance by providing a more stable arc and improved energy efficiency. This technological advancement contributes to lower operational costs and allows for a more consistent weld quality across different materials and thicknesses. Additionally, the inverter technology enables the machine to be lightweight and portable, making it convenient for jobs that require mobility.

Another prominent characteristic of the SVM128-A is its user-friendly interface. The machine features intuitive controls and a digital display that allows operators to easily set the desired welding parameters. This simplified setup helps reduce the learning curve for new users while also offering precise control for experienced professionals.

The Lincoln Electric SVM128-A is designed with durability in mind. Its robust construction ensures that it can withstand the rigors of frequent use in demanding environments. The machine is also equipped with various safety features, including thermal overload protection and a duty cycle rating that prevents overheating, ultimately extending its lifespan.

For optimal performance, the SVM128-A provides adjustable output options, allowing users to customize the welding parameters based on their specific needs. This flexibility makes it suitable for welding various metals, including steel, aluminum, and stainless steel.

In summary, the Lincoln Electric SVM128-A combines versatility, advanced technology, and a user-friendly design. With its capability to perform multiple welding processes, lightweight construction, and durable features, it stands out as an excellent option for anyone looking to achieve high-quality welds. Whether for professional or personal use, the SVM128-A is poised to deliver reliable performance and exceptional results.