Lincoln Electric SVM128-A service manual PC Board Troubleshooting Procedures

Page 57

Section TOC

Master TOC

F-3

F-3

TROUBLESHOOTING & REPAIR

PC BOARD TROUBLESHOOTING PROCEDURES

WARNING

Return to

Return to

ELECTRIC SHOCK can kill.

Have an electrician install and service this equipment. Turn the machine OFF before working on equipment. Do not touch electrically hot parts.

Remove the PC Board from the static-shielding bag and place it directly into the equipment. Don’t set the PC Board on or near paper, plastic or cloth which could have a static charge. If the PC Board can’t be installed immediately, put it back in the static-shielding bag.

If the PC Board uses protective shorting jumpers, don’t remove them until installation is complete.

Return to Section TOC

Return to Master TOC

Sometimes machine failures appear to be due to PC board failures. These problems can sometimes be traced to poor electrical connections. To avoid prob- lems when troubleshooting and replacing PC boards, please use the following procedure:

1.Determine to the best of your technical ability that the PC board is the most likely component causing the failure symptom.

2.Check for loose connections at the PC board to assure that the PC board is properly connected.

3.If the problem persists, replace the suspect PC board using standard practices to avoid static elec- trical damage and electrical shock. Read the warn- ing inside the static resistant bag and perform the following procedures:

If you return a PC Board to The Lincoln Electric Company for credit, it must be in the static-shielding bag. This will prevent further damage and allow prop- er failure analysis.

4.Test the machine to determine if the failure symp- tom has been corrected by the replacement PC board.

NOTE: Allow the machine to heat up so that all electri- cal components can reach their operating temperature.

5. Remove the replacement PC board and substitute

it with the original PC board to recreate the original

problem.

a. If the original problem does not reappear

by substituting the original board, then the

PC board was not the problem. Continue

to look for bad connections in the control

Return to Section TOC

Return to Master TOC

ATTENTION Static-Sensitive Devices Handle only at Static-Safe Workstations

Reusable

Container

Do Not Destroy

PC Board can be damaged by static electricity.

Remove your body’s static charge before opening the static-shield- ing bag. Wear an anti-static wrist strap. For safety, use a 1 Meg ohm resistive cord connected to a grounded part of the equipment frame.

If you don’t have a wrist strap, touch an unpainted, grounded, part of the equipment frame. Keep touching the frame to pre- vent static build-up. Be sure not to touch any electrically live parts at the same time.

wiring harness, junction blocks, and termi-

nal strips.

b. If the original problem is recreated by the

substitution of the original board, then the

PC board was the problem. Reinstall the

replacement PC board and test the

machine.

6. Always indicate that this procedure was followed

when warranty reports are to be submitted.

NOTE: Following this procedure and writing on the warranty report, “INSTALLED AND SWITCHED PC BOARDS TO VERIFY PROBLEM,” will help avoid denial of legitimate PC board warranty claims.

Return to Section TOC

Return to Master TOC

Tools which come in contact with the PC Board must be either conductive, anti-static or static-dissipative.

SA-250

Image 57
Contents SHIELD-ARCTMSA-250 SA-250 SafetyElectric Shock can kill Iii Welding Sparks can cause fire or explosionSûreté Pour Soudage a L’Arc Précautions DE SûretéMaster Table of Contents for ALL Sections Table of Contents Installation Section Technical Specifications SA-250 InstallationSafety Precautions Location and VentilationStoring PRE-OPERATION Engine Service Muffler Cooling SystemExhaust Spark Arrester TrailerWelding Cable Connections Electrical Output ConnectionsAuxiliary Power RECEPTACLES, PLUGS, and HAND-HELD Equipment Machine GroundingCircuit Breakers SA-250 Table of Contents Operation Section Operation Safety InstructionsOperating Instructions General DescriptionDesign Features Operational Features and ControlsRecommended Applications WelderLimitations Welding CapabilityWELDER/GENERATOR Controls Controls and SettingsCurrent Range Selector Control of Welding CurrentFigure B.3 Diesel Engine Controls Diesel Engine ControlsBefore Starting the Engine Engine OperationStarting the Engine Check and fill the engine fuel tankStopping the Engine Cold Weather StartingBREAK-IN Period After you finish welding Welding OperationTable B.1 Range Settings for Wire SIZE/SPEED 12B-12 Auxiliary PowerTable of Contents Accessories OPTIONS/ACCESSORIES Semiautomatic Welding Accessories TIG Welding AccessoriesConnection of the LN-7 to Connection of Lincoln Electric Wire FeedersPIN Amphenol Unused Lead Individually Connection of the LN-25 toFigure C.4 SA-250/LN-25 Across the ARC Connection Diagram Control K487-25 Table of Contents Maintenance Engine Maintenance Routine and Periodic MaintenanceFigure D.1 OIL Drain and Refill Eliminate Air from the Fuel System HOW to Eliminate AIR from the Fuel System Figure D.4 Eliminating AIR from the Fuel System Self-vent methodFigure D.5 Engine Coolant Drain Plug Figure D.6 Tightening the FAN Belt Starting Engine Daily or BeforeFirst 25-50 Hours EveryCleaning the Battery Battery MaintenanceWELDER/GENERATOR Maintenance Idler Maintenance Figure D.5 Major Component Locations SA-250 Table of Contents Theory of Operation Section Theory of Operation ALTERNATOR, and ProtectionCircuits Auxiliary and Field Feedback Coils Excitation FlashingInterpole and Series Coils Fine Current Adjustment Current Range SelectorEngine Idler Circuit Mechanical Coupling DC Generator MachinesSA-250 Table of Contents Troubleshooting & Repair Section HOW to USE Troubleshooting Guide Troubleshooting & RepairPC Board can be damaged by static electricity PC Board Troubleshooting ProceduresTroubleshooting Guide Observe Safety GuidelinesDetailed in the beginning of this manual Shunt Field Winding Test Field Shunt Winding Test Output Problems Function Problems Function Problems Troubleshooting & Repair Symptoms Misadjustments Course of Action Problems Possible AreasWelding Problems Alternator Rotor Test Test DescriptionMaterials Needed Slip Rings Brushes Test ProcedureFigure F.2 Measuring Rotor Resistance Figure F.3 Measuring Rotor Resistance to Ground Field Shunt Winding Test Field Shunt Winding Test PIN TAB Idler Solenoid Test Idler Solenoid Test Engine Throttle Adjustment Test Strobe Tach Method Engine Throttle Adjustment TestOscilloscope Method Frequency Counter MethodAdjusting Screw Locking NUT Description Flashing the FieldsDo not remove brush holder ProcedureScope Settings Normal Open Circuit Voltage Waveform 115VAC SupplyHigh Idle no Load Fine Current Control Rheostat AT Maximum Normal Open Circuit DC Weld Voltage Waveform Typical DC Weld Output Voltage Waveform Machine Loaded Selector Switch AT Maximum PositionAlternator Rotor Removal Replacement Alternator Rotor Removal ReplacementLoosen Screws Alternator Cover Slip Rings Brushes Figure F.13 Rotor Removal Replacement Alternator Stator Removal and Replacement Alternator Stator Removal ProcedureField Bridge Rectifier VAC Receptacle Circuit Breaker Genernator Brush HOLDER/COIL Cables Figure F.18 Drill Spot Locations Generator Frame Removal and Replacement See Figure F.19 for steps 4 Generator Frame RemovalFigure F.20 Wire and Selector Switch Connections Figure F.21 Case Front Removal Rope Sling ENGINE/GENERATOR Mounting Holes Troubleshooting & Repair Generator Armature Removal and Replacement Figure F.23 Blower Paddle Removal Generator Armature RemovalRetest After Repair AC Auxiliary Power Receptacle OutputEngine Output Welder DC OutputSA-250 Electrical Diagrams Section Section G SA-250 Wiring Diagram Electrical DiagramsWire Feed Module Wiring Diagram Idler PC Board M13708 Schematic Idler PC Board M13708 Components SVM Error Reporting Form

SVM128-A specifications

The Lincoln Electric SVM128-A is a cutting-edge welding machine designed to meet the demands of both professional welders and DIY enthusiasts. This versatile welding power source brings together advanced technology and robust design, making it a reliable choice for various welding applications.

One of the standout features of the SVM128-A is its capability to perform multiple welding processes. It supports MIG, TIG, and stick welding, allowing users to tackle a wide range of projects with ease. This multi-functionality makes it ideal for professionals working in different industries, as well as for hobbyists who enjoy diverse welding tasks.

The SVM128-A is equipped with inverter technology, which enhances its performance by providing a more stable arc and improved energy efficiency. This technological advancement contributes to lower operational costs and allows for a more consistent weld quality across different materials and thicknesses. Additionally, the inverter technology enables the machine to be lightweight and portable, making it convenient for jobs that require mobility.

Another prominent characteristic of the SVM128-A is its user-friendly interface. The machine features intuitive controls and a digital display that allows operators to easily set the desired welding parameters. This simplified setup helps reduce the learning curve for new users while also offering precise control for experienced professionals.

The Lincoln Electric SVM128-A is designed with durability in mind. Its robust construction ensures that it can withstand the rigors of frequent use in demanding environments. The machine is also equipped with various safety features, including thermal overload protection and a duty cycle rating that prevents overheating, ultimately extending its lifespan.

For optimal performance, the SVM128-A provides adjustable output options, allowing users to customize the welding parameters based on their specific needs. This flexibility makes it suitable for welding various metals, including steel, aluminum, and stainless steel.

In summary, the Lincoln Electric SVM128-A combines versatility, advanced technology, and a user-friendly design. With its capability to perform multiple welding processes, lightweight construction, and durable features, it stands out as an excellent option for anyone looking to achieve high-quality welds. Whether for professional or personal use, the SVM128-A is poised to deliver reliable performance and exceptional results.