Lincoln Electric SVM101-B service manual Safety, Welding Sparks can cause fire or explosion, Iii

Page 4

iii

SAFETY

iii

Return to Master TOC

Return to Master TOC

Return to Master TOC

WELDING SPARKS can cause fire or explosion.

6.a. Remove fire hazards from the welding area. If this is not possible, cover them to prevent the welding sparks from starting a fire. Remember that welding sparks and hot

materials from welding can easily go through small cracks and openings to adjacent areas. Avoid welding near hydraulic lines. Have a fire extinguisher readily available.

6.b. Where compressed gases are to be used at the job site, special precautions should be used to prevent hazardous situations. Refer to “Safety in Welding and Cutting” (ANSI Standard Z49.1) and the operating information for the equipment being used.

6.c. When not welding, make certain no part of the electrode circuit is touching the work or ground. Accidental contact can cause overheating and create a fire hazard.

6.d. Do not heat, cut or weld tanks, drums or containers until the proper steps have been taken to insure that such procedures will not cause flammable or toxic vapors from substances inside. They can cause an explosion even though they have been “cleaned”. For information, purchase “Recommended Safe Practices for the Preparation for Welding and Cutting of Containers and Piping That Have Held Hazardous Substances”, AWS F4.1 from the American Welding Society (see address above).

6.e. Vent hollow castings or containers before heating, cutting or welding. They may explode.

6.f. Sparks and spatter are thrown from the welding arc. Wear oil free protective garments such as leather gloves, heavy shirt, cuffless trousers, high shoes and a cap over your hair. Wear ear plugs when welding out of position or in confined places. Always wear safety glasses with side shields when in a welding area.

6.g. Connect the work cable to the work as close to the welding area as practical. Work cables connected to the building framework or other locations away from the welding area increase the possibility of the welding current passing through lifting chains, crane cables or other alternate circuits. This can create fire hazards or overheat lifting chains or cables until they fail.

6.h. Also see item 1.c.

CYLINDER may explode if damaged.

7.a. Use only compressed gas cylinders

containing the correct shielding gas for the process used and properly operating regulators designed for the gas and

pressure used. All hoses, fittings, etc. should be suitable for the application and maintained in good condition.

7.b. Always keep cylinders in an upright position securely chained to an undercarriage or fixed support.

7.c. Cylinders should be located:

Away from areas where they may be struck or subjected to physical damage.

A safe distance from arc welding or cutting operations and any other source of heat, sparks, or flame.

7.d. Never allow the electrode, electrode holder or any other electrically “hot” parts to touch a cylinder.

7.e. Keep your head and face away from the cylinder valve outlet when opening the cylinder valve.

7.f. Valve protection caps should always be in place and hand tight except when the cylinder is in use or connected for use.

7.g. Read and follow the instructions on compressed gas cylinders, associated equipment, and CGA publication P-l, “Precautions for Safe Handling of Compressed Gases in Cylinders,” available from the Compressed Gas Association 1235 Jefferson Davis Highway, Arlington, VA 22202.

FOR ELECTRICALLY powered equipment.

8.a. Turn off input power using the disconnect switch at the fuse box before working on the equipment.

8.b. Install equipment in accordance with the U.S. National Electrical Code, all local codes and the manufacturer’s recommendations.

8.c. Ground the equipment in accordance with the U.S. National Electrical Code and the manufacturer’s recommendations.

Return to Master TOC

Mar ‘95

Image 4
Contents Invertec Safety ARC Rays can burn Electric Shock can killFumes and Gases can be dangerous Safety Welding Sparks can cause fire or explosionCylinder may explode if damaged IiiPrécautions DE Sûreté Sûreté Pour Soudage a L’ArcMaster Table of Contents for ALL Sections Installation Section Table of ContentsSection A-1 Installation Three Phase Single Phase3INSTALLATIONA-3 Product Description Electrical InstallationInput Voltage Setup LocationPower Input Connection Connection of Wire Feeders to the InvertecSingle Phase Input Three Phase InputK900-1 DC TIG Starter Connection Remote Control of InvertecParallel Operation Output Cables 6INSTALLATIONA-6Quick Disconnect Plugs Operation Section Section B-1Operation Operating InstructionsDuty Cycle Control Function / OperationMode Switch Full Range Is Is Very Soft, 10 Is Very CrispMeter Polarity Switch Auxiliary PowerAccessories Section Section C-1Accessories Options / AccessoriesMaintenance Section Section D-1Maintenance Input Filter Capacitor Discharge ProcedurePreventive Maintenance Overload ProtectionFigure D.2 Location of Maintenance Components Theory of Operation Section Section E-1Theory of Operation Input Line Voltage & Auxiliary TransformerPrecharge & Protection Circuits Return to Return to Section TOCSwitch Boards Figure E-4 ---SWITCH Circuits & TransformerOutput and Control Circuits Figure E-5 --OUTPUT & Control CircuitsPassive Minimum Output Pulse Width ModulationMaximum Output Overload Protection Protective CircuitsThermal Protection Troubleshooting & Repair Section Section F-1Troubleshooting & Repair HOW to USE Troubleshooting GuidePC Board Troubleshooting Procedures Input Filter Capacitor CONDITION- ING Additional Information Oscilloscope WarningMatched Parts Feeding Problems DepartmentFeeding Problems See Input Rectifier test See Output Diodes test See Switch Board test V300-I 11TROUBLESHOOTING & REPAIRF-11 Input Filter Capacitor Discharge ProcedureInput Filter Capacitor Discharge Procedure Figure F.I Location of Input Filter Capacitor TerminalsOutput Pilot Circuit Test Test Procedure G2527 J2 J4 J3V300-I Protection Board Output Test Test Procedure Turn Power Switch OFF313 306 J15 275F 311 V300-I Protection Figure F.6 Inserting ProbesCapacitor Balance Test Static Capacitor Test 912 V300-I Switch Board Test Switch Board Test Switch Board Test Table F.3 Snubber Resistor Test Snubber Resistor Test Check Test Result Conclusion Next Test Step Repair ActionOutput Diode Test Test Procedure Output Diode TestInput Rectifier Test Points Steps Table F.5Probe Acceptable Meter Reading Overcurrent Protection Current Trigger Test Overcurrent Protection Current Trigger Test 302 G2527 Control J1 275DControl Overvoltage Protection DC Trigger Circuit Test Overvoltage Protection DC Trigger Circuit Test Figure F.16 PC Boards Removed306 275F 309 310 1J8 #311 1J14 6J6 #302 #313 #275D3J8 2J14 1J6 #301 #305Thermal Protection AC Trigger Circuit Figure F.20 PC Boards Moved for Access Thermal Protection AC Trigger CircuitFigure F.21 Thermal Protection AC Trigger Circuit V300-I Power Board Test Test a Power Board TestTest B Figure F.23 Power Board Test Points Simplified Trigger Circuit Capacitor Removal and Replacement Procedure Capacitor Removal and Replacement ProcedureFigure F.27 -- Removing Capacitor Nuts Figure F.27 Switch Board Removal and Replacement Procedure Switch Board Replacement ProcedureTest After Switch Board or Capacitor Replacement Test After Switch Board or Capacitor Replacement Perform Retest After RepairOutput Diode Replacement Procedure 60TROUBLESHOOTING & REPAIRF-60 Output Diode Replacement Procedure61TROUBLESHOOTING & REPAIRF-61 Procedure Diode ModulesRetest After Repair OCV at rated Input V300-PROOutput Min. Acceptable Max. All Modes V300-I V300-PROElectrical Diagrams Section Section G-1Wiring Diagram Entire Machine Code 9826 L8657 #0#Wiring Diagram Entire Machine Code 9827 L8938 ReturnWiring Diagram Entire Machine Code 10036 L9299 Wiring Diagram Entire Machine Code 10037 L9300 $ $Wiring Diagram Entire Machine Code 10132 L9567 SectionWiring Diagram Code Wiring Diagram Entire Machine Code 10133 L9568Wiring Diagram Entire Machine Code 10258 L10189 $& $V300-I Wiring Diagram European Wiring Diagram Entire Machine Code 10336, 10450 L10205Schematic Entire Machine # . $ #$ !#$ #! %&$Schematic Driver PC Board S20216 PC Board Assembly Driver L8660 IdentificationSchematic Driver PC Board S20799 PC Board Assembly Driver DescriptionSchematic Switch PC Board L8440 PC Board Assembly Switch L8441 CAPACITOR, Cemo 2700P 50V 5%Schematic Switch PC Board L10956 PC Board Assembly Switch L10958-1 Reqd IdentificationSchematic Control PC Board G2525 Electrical Diagrams CAPACITOR, Cemo 150P Schematic Protection PC Board M16097 PC Board Assembly Protection L7915-2 DZ1Schematic Power PC Board M16018 PC Board Assembly Power L8033-7 VOLT. REG. & Heat Sink Asbly