Custom Real Time I/Q Baseband

Working with Differential Data Encoding

Configuring User-Defined I/Q Modulation

1.

Press Preset.

2.

Press Mode > Custom > Real Time I/Q Baseband > Modulation Type > Define User I/Q > More (1 of 2) > Load Default

 

I/Q Map > QAM > 4QAM.

This loads a default 4QAM I/Q modulation and displays it in the I/Q Values editor. The default 4QAM I/Q modulation contains data that represent 4 symbols (00, 01, 10, and 11) mapped into the I/Q plane using 2 distinct values (1.000000 and 1.000000). These 4 symbols will be traversed during the modulation process by the symbol table offset values associated with each symbol of data.

Accessing the Differential State Map Editor

Press Configure Differential Encoding.

This opens the Differential State Map editor. At this point, you see the data for the 1st symbol (00000000) and the cursor prepared to accept an offset value.You are now prepared to create a custom differential encoding for the user- defined default 4QAM I/Q modulation.

182

Chapter 7

Page 196
Image 196
Agilent Technologies E8267D PSG manual Configuring User-Defined I/Q Modulation, Accessing the Differential State Map Editor

E8267D PSG, E8257D PSG specifications

Agilent Technologies, a recognized leader in electronic measurement and communications solutions, offers a comprehensive range of signal generators, including the E8257D PSG (Pulsed Signal Generator) and E8267D PSG. These instruments are engineered to meet the demanding requirements of wireless communication, aerospace, defense, and various research applications.

The E8257D PSG is known for its versatility and reliability. It operates within a frequency range of 250 kHz to 40 GHz, making it suitable for a wide array of applications, from signal generation to vector modulation. With an output power capability of up to +30 dBm, it delivers high-quality signals with exceptional precision. Its low phase noise performance is especially critical for applications such as radar and communication system testing, where signal integrity is paramount.

One of the standout features of the E8257D is its advanced modulation capabilities, including analog and digital modulation schemes. This flexibility allows engineers to simulate real-world communications environments accurately. The PSG also features a built-in arbitrary waveform generator that enables users to create complex waveforms tailored to specific testing needs, providing a significant advantage in research and development.

On the other hand, the Agilent E8267D PSG is designed to cater to the needs of users requiring a combined signal generation and analysis solution. With the capability to generate signals from 250 kHz to 67 GHz, the E8267D is ideal for millimeter-wave applications, as well as testing next-generation wireless technologies.

This model includes features such as enhanced phase noise performance and faster switching speed, which are crucial for signal integrity in sophisticated networks. The instrument's intuitive user interface and powerful software integration facilitate effortless operation and automation, thereby improving workflow efficiency.

Both the E8257D and E8267D PSG instruments incorporate cutting-edge technologies such as low-noise microwave and RF components, as well as digital signal processing capabilities. They provide users with enhanced accuracy and reliability in their measurements.

In summary, Agilent Technologies' E8257D and E8267D PSG signal generators represent the pinnacle of precision in signal generation technology. With their extensive feature sets, advanced modulation capabilities, and robust performance specifications, these instruments are invaluable tools for engineers and researchers working across various high-tech industries.