Basic Digital Operation

Arbitrary (ARB) Waveform File Headers

Viewing Header Information with the Dual ARB Player Off

One of the differences between a modulation format and the dual ARB player is that even when the dual ARB player is off, you can view a file header. You cannot, however, modify the displayed file header unless the dual ARB player is on, and the displayed header is selected for playback. With the dual ARB player off, perform the following steps.

1.Select a waveform:

a.Press Mode > Dual ARB > Select Waveform.

b.Highlight the desired waveform file.

c.Press the Select Waveform softkey.

2.Access the file header: Press ARB Setup > Header Utilities.

The header information is now visible in the PSG display. As shown in Figure 3- 6, the header editing softkeys are grayed- out, meaning they are inactive.

Figure 3-6

Viewing Header Information

Header editing softkeys grayed-out

File header information and current signal generator settings

Note: When the dual ARB player is off, the current instrument settings column does not update; the values displayed may not be valid.

Page 1

Page 2

80

Chapter 3

Page 94
Image 94
Agilent Technologies E8267D PSG, E8257D PSG manual Viewing Header Information with the Dual ARB Player Off

E8267D PSG, E8257D PSG specifications

Agilent Technologies, a recognized leader in electronic measurement and communications solutions, offers a comprehensive range of signal generators, including the E8257D PSG (Pulsed Signal Generator) and E8267D PSG. These instruments are engineered to meet the demanding requirements of wireless communication, aerospace, defense, and various research applications.

The E8257D PSG is known for its versatility and reliability. It operates within a frequency range of 250 kHz to 40 GHz, making it suitable for a wide array of applications, from signal generation to vector modulation. With an output power capability of up to +30 dBm, it delivers high-quality signals with exceptional precision. Its low phase noise performance is especially critical for applications such as radar and communication system testing, where signal integrity is paramount.

One of the standout features of the E8257D is its advanced modulation capabilities, including analog and digital modulation schemes. This flexibility allows engineers to simulate real-world communications environments accurately. The PSG also features a built-in arbitrary waveform generator that enables users to create complex waveforms tailored to specific testing needs, providing a significant advantage in research and development.

On the other hand, the Agilent E8267D PSG is designed to cater to the needs of users requiring a combined signal generation and analysis solution. With the capability to generate signals from 250 kHz to 67 GHz, the E8267D is ideal for millimeter-wave applications, as well as testing next-generation wireless technologies.

This model includes features such as enhanced phase noise performance and faster switching speed, which are crucial for signal integrity in sophisticated networks. The instrument's intuitive user interface and powerful software integration facilitate effortless operation and automation, thereby improving workflow efficiency.

Both the E8257D and E8267D PSG instruments incorporate cutting-edge technologies such as low-noise microwave and RF components, as well as digital signal processing capabilities. They provide users with enhanced accuracy and reliability in their measurements.

In summary, Agilent Technologies' E8257D and E8267D PSG signal generators represent the pinnacle of precision in signal generation technology. With their extensive feature sets, advanced modulation capabilities, and robust performance specifications, these instruments are invaluable tools for engineers and researchers working across various high-tech industries.