Two-Tone Waveform Generator

Creating, Viewing, and Modifying Two-Tone Waveforms

1.

On the signal generator, press Mode Setup > Alignment Left Cent Right to Left.

2.

Press Apply Settings to regenerate the waveform.

NOTE Whenever a change is made to a setting while the two- tone generator is operating (Two Tone Off On set to On), you must apply the change by pressing the Apply Settings softkey before the updated waveform will be generated. When you apply a change, the baseband generator creates a two- tone waveform using the new settings and replaces the existing waveform in ARB memory.

3.On the spectrum analyzer, temporarily turn off waveform averaging to refresh your view more quickly. You should now see a left- aligned two- tone waveform that is similar to the one shown in Figure 9- 5.

Figure 9-5

Two-Tone

Upper Tone

Channels

Aligned with

 

Carrier

 

Frequency

Intermodulation

 

Distortion

 

Carrier

Frequency

200

Chapter 9

Page 214
Image 214
Agilent Technologies E8267D PSG, E8257D PSG manual Two-Tone, Intermodulation Distortion Carrier Frequency

E8267D PSG, E8257D PSG specifications

Agilent Technologies, a recognized leader in electronic measurement and communications solutions, offers a comprehensive range of signal generators, including the E8257D PSG (Pulsed Signal Generator) and E8267D PSG. These instruments are engineered to meet the demanding requirements of wireless communication, aerospace, defense, and various research applications.

The E8257D PSG is known for its versatility and reliability. It operates within a frequency range of 250 kHz to 40 GHz, making it suitable for a wide array of applications, from signal generation to vector modulation. With an output power capability of up to +30 dBm, it delivers high-quality signals with exceptional precision. Its low phase noise performance is especially critical for applications such as radar and communication system testing, where signal integrity is paramount.

One of the standout features of the E8257D is its advanced modulation capabilities, including analog and digital modulation schemes. This flexibility allows engineers to simulate real-world communications environments accurately. The PSG also features a built-in arbitrary waveform generator that enables users to create complex waveforms tailored to specific testing needs, providing a significant advantage in research and development.

On the other hand, the Agilent E8267D PSG is designed to cater to the needs of users requiring a combined signal generation and analysis solution. With the capability to generate signals from 250 kHz to 67 GHz, the E8267D is ideal for millimeter-wave applications, as well as testing next-generation wireless technologies.

This model includes features such as enhanced phase noise performance and faster switching speed, which are crucial for signal integrity in sophisticated networks. The instrument's intuitive user interface and powerful software integration facilitate effortless operation and automation, thereby improving workflow efficiency.

Both the E8257D and E8267D PSG instruments incorporate cutting-edge technologies such as low-noise microwave and RF components, as well as digital signal processing capabilities. They provide users with enhanced accuracy and reliability in their measurements.

In summary, Agilent Technologies' E8257D and E8267D PSG signal generators represent the pinnacle of precision in signal generation technology. With their extensive feature sets, advanced modulation capabilities, and robust performance specifications, these instruments are invaluable tools for engineers and researchers working across various high-tech industries.