Configuring H.323 Gatekeepers and Proxies

H.323 Proxy Features

Table 25

Guidelines for Networks That Do Not Use NAT

 

 

 

 

For Networks Not Using NAT

Firewall with H.323. NAT

Firewall Without H.323 NAT

 

 

 

Firewall with Dynamic Access

Gatekeeper and proxy inside the

Gatekeeper and proxy inside the

Control

 

firewall

firewall

 

 

Gatekeeper and proxy outside

Gatekeeper and proxy outside the

 

 

the firewall

firewall

 

 

 

Firewall Without Dynamic

Gatekeeper and proxy inside the

Gatekeeper and proxy inside the

Access Control

firewall, with static access lists

firewall, with static access lists

 

 

on the firewall

on the firewall

 

 

 

 

Quality of Service

Quality of service (QoS) enables complex networks to control and predictably service a variety of applications. QoS expedites the handling of mission-critical applications while sharing network resources with noncritical applications. QoS also ensures available bandwidth and minimum delays required by time-sensitive multimedia and voice applications. In addition, QoS gives network managers control over network applications, improves cost-efficiency of WAN connections, and enables advanced differentiated services. QoS technologies are elemental building blocks for other Cisco IOS-enabling services such as its H.323-compliant gatekeeper. Overall call quality can be improved dramatically in the multimedia network by using pairs of proxies between regions of the network where QoS can be requested.

When two H.323 terminals communicate directly, the resulting call quality can range from good (for high-bandwidth intranets) to poor (for most calls over the public network). As a result, deployment of H.323 is almost always predicated on the availability of some high-bandwidth, low-delay, low-packet-loss network that is separate from the public network or that runs overlaid with the network as a premium service and adequate QoS.

Adequate QoS usually requires terminals that are capable of signaling such premium services. There are two major ways to achieve such signaling:

RSVP to reserve flows having adequate QoS based on the media codecs of H.323 traffic

IP precedence bits to signal that the H.323 traffic is special and that it deserves higher priority Unfortunately, the vast majority of H.323 terminals cannot achieve signaling in either of these ways. The proxy can be configured to use any combination of RSVP and IP precedence bits.

The proxy is not capable of modifying the QoS between the terminal and itself. To achieve the best overall QoS, ensure that terminals are connected to the proxy using a network that intrinsically has good QoS. In other words, configure a path between a terminal and proxy that provides good bandwidth, delay, and packet-loss characteristics without the terminal needing to request special QoS. A high-bandwidth LAN works well for this.

Application-Specific Routing

To achieve adequate QoS, a separate network may be deployed that is partitioned away from the standard data network. The proxy can take advantage of such a partitioned network using a feature known as application-specific routing (ASR).

Cisco IOS Voice, Video, and Fax Configuration Guide

VC-301

Page 13
Image 13
Cisco Systems VC-289 manual Quality of Service, Application-Specific Routing, VC-301

VC-289 specifications

Cisco Systems has long been a leader in networking technology, and among its diverse range of products is the VC-289. Designed specifically for enhanced performance in high-demand environments, the VC-289 serves a critical role in supporting the modern networking infrastructure.

One of the standout features of the VC-289 is its scalability. The device is engineered to easily accommodate expanded workloads, ensuring that organizations can grow without the need for frequent upgrades. This scalability is complemented by Cisco's commitment to backward compatibility, allowing businesses to integrate new systems with existing setups seamlessly.

In terms of performance, the VC-289 boasts impressive processing power. With advanced multi-core architecture, it is capable of handling multiple data streams simultaneously, making it ideal for environments that require consistent data flow, such as cloud computing and IoT applications. The device’s high throughput ensures that users experience minimal latency, facilitating quick data transfers even during peak usage times.

Security is another key characteristic of the VC-289. Cisco has integrated robust security protocols that protect against various cyber threats. Through features such as advanced encryption standards and intrusion prevention systems, organizations can ensure that sensitive data remains secure and is not compromised during transmission.

Another notable technology within the VC-289 is its support for software-defined networking (SDN) capabilities. This allows for more flexible network management, enabling IT teams to adapt the network according to evolving business needs. The ability to programmatically control the network also means that businesses can implement changes more rapidly, reducing downtime and improving overall productivity.

The VC-289 is designed with energy efficiency in mind, featuring power-saving modes that help reduce operational costs. This focus on sustainability not only benefits the environment but also appeals to organizations striving to meet corporate social responsibility objectives.

In conclusion, the Cisco Systems VC-289 stands as an exemplary solution for modern networking challenges. With its scalability, performance capabilities, enhanced security features, SDN support, and energy efficiency, it meets the demands of today's fast-paced and ever-evolving technological landscape. Organizations looking to invest in a robust networking solution would do well to consider the VC-289 as a cornerstone of their infrastructure.