Configuring H.323 Gatekeepers and Proxies

H.323 Gatekeeper Features

Note For ease of maintenance, the same prefix type should be used to denote the same gateway type in all zones under your administration. No more than 50 different technology prefixes should be registered per zone.

Also, with the gw-type-prefixcommand, a hop off can be forced to a particular zone. When an endpoint or gateway makes a call-admission request to its gatekeeper, the gatekeeper determines the destination address by first looking for the technology prefix. When that is matched, the remaining string is compared against known zone prefixes. If the address is determined to be a remote zone, the entire address, including technology and zone prefixes, is sent to the remote gatekeeper in a location request. That remote gatekeeper then uses the technology prefix to decide on which of its gateways to hop off. In other words, the zone prefix (defined using the zone prefix command) determines the routing to a zone, and once there, the technology prefix (defined using the gw-type-prefixcommand) determines the gateway to be used in that zone. The zone prefix takes precedence over the technology prefix.

This behavior can be overridden by associating a forced hop-off zone with a particular technology prefix. Associating a forced hop-off zone with a particular technology prefix forces the call to the specified zone, regardless of what the zone prefix in the address is. As an example, you are in the 408 area code and want callers to the 212 area code in New York to use H.323-over-IP and hop off there because it saves on costs. However, the only H.320 gateway is in Denver. In this example, calls to H.320 endpoints must be forced to hop off in Denver, even if the destination H.320 endpoint is in the 212 area code. The forced hop-off zone can be either a local zone (that is, one that is managed by the local gatekeeper) or a remote zone.

HSRP Support

Cisco routers support Hot Standby Router Protocol (HSRP), which allows one router to serve as a backup to another router. Cisco gatekeepers can be configured to use HSRP so that when one gatekeeper fails, the standby gatekeeper assumes its role.

To configure a gatekeeper to use HSRP, perform the following tasks:

Select one interface on each gatekeeper to serve as the HSRP interface and configure these two interfaces so that they belong to the same HSRP group but have different priorities. The one with the higher priority will be the active gatekeeper; the other assumes the standby role. Make a note of the virtual HSRP IP address shared by both of these interfaces. (For details on HSRP and HSRP configuration, refer to the Cisco IOS IP Configuration Guide.)

Configure the gatekeepers so that the HSRP virtual IP address is the RAS address for all local zones.

Make sure that the gatekeeper-mode configurations on both routers are identical.

If the endpoints and gateways are configured so that they use a specific gatekeeper address (rather than multicasting), use the HSRP virtual IP address as the gatekeeper address. You can also let the endpoints and gateways find the gatekeeper by multicasting. As long as it is on standby status, the secondary gatekeeper neither receives nor responds to multicast or unicast requests.

As long as both gatekeepers are up, the one with the higher priority on its HSRP interface will be the active gatekeeper. If this active gatekeeper fails, or if its HSRP interface fails, the standby HSRP interface assumes the virtual HSRP address and, with it, the active gatekeeper role. When the gatekeeper with the higher HSRP priority comes back online, it reclaims the HSRP virtual address and the gatekeeper function, while the secondary gatekeeper goes back to standby status.

Cisco IOS Voice, Video, and Fax Configuration Guide

VC-296

Page 8
Image 8
Cisco Systems VC-289 manual Hsrp Support, VC-296

VC-289 specifications

Cisco Systems has long been a leader in networking technology, and among its diverse range of products is the VC-289. Designed specifically for enhanced performance in high-demand environments, the VC-289 serves a critical role in supporting the modern networking infrastructure.

One of the standout features of the VC-289 is its scalability. The device is engineered to easily accommodate expanded workloads, ensuring that organizations can grow without the need for frequent upgrades. This scalability is complemented by Cisco's commitment to backward compatibility, allowing businesses to integrate new systems with existing setups seamlessly.

In terms of performance, the VC-289 boasts impressive processing power. With advanced multi-core architecture, it is capable of handling multiple data streams simultaneously, making it ideal for environments that require consistent data flow, such as cloud computing and IoT applications. The device’s high throughput ensures that users experience minimal latency, facilitating quick data transfers even during peak usage times.

Security is another key characteristic of the VC-289. Cisco has integrated robust security protocols that protect against various cyber threats. Through features such as advanced encryption standards and intrusion prevention systems, organizations can ensure that sensitive data remains secure and is not compromised during transmission.

Another notable technology within the VC-289 is its support for software-defined networking (SDN) capabilities. This allows for more flexible network management, enabling IT teams to adapt the network according to evolving business needs. The ability to programmatically control the network also means that businesses can implement changes more rapidly, reducing downtime and improving overall productivity.

The VC-289 is designed with energy efficiency in mind, featuring power-saving modes that help reduce operational costs. This focus on sustainability not only benefits the environment but also appeals to organizations striving to meet corporate social responsibility objectives.

In conclusion, the Cisco Systems VC-289 stands as an exemplary solution for modern networking challenges. With its scalability, performance capabilities, enhanced security features, SDN support, and energy efficiency, it meets the demands of today's fast-paced and ever-evolving technological landscape. Organizations looking to invest in a robust networking solution would do well to consider the VC-289 as a cornerstone of their infrastructure.