Configuring H.323 Gatekeepers and Proxies

H.323 Gatekeeper Features

Interzone Routing Using E.164 Addresses

Interzone routing may be configured using E.164 addresses.

Two types of address destinations are used in H.323 calls. The destination can be specified using either an H.323-ID address (a character string) or an E.164 address (a string that contains telephone keypad characters). The way interzone calls are routed depends on the type of address being used.

When using H.323-ID addresses, interzone routing is handled through the use of domain names. For example, to resolve the domain name bob@cisco.com, the source endpoint gatekeeper finds the gatekeeper for cisco.com and sends it the location request for the target address bob@cisco.com. The destination gatekeeper looks in its registration database, sees bob registered, and returns the appropriate IP address to get to bob.

When using E.164 addresses, call routing is handled through zone prefixes and gateway-type prefixes, also referred to as technology prefixes. The zone prefixes, which are typically area codes, serve the same purpose as domain names in H.323-ID address routing. Unlike domain names, however, more than one zone prefix can be assigned to one gatekeeper, but the same prefix cannot be shared by more than one gatekeeper.

Use the zone prefix command to define gatekeeper responsibilities for area codes. The command can also be used to tell the gatekeeper which prefixes are in its own zones and which remote gatekeepers are responsible for other prefixes.

Note Area codes are used as an example in this section, but a zone prefix need not be an area code. It can be a country code, an area code plus local exchange (NPA-NXX), or any other logical hierarchical partition.

The following sample command shows how to configure a gatekeeper with the knowledge that zone prefix 212....... (that is, any address beginning with area code 212 and followed by seven arbitrary digits)

is handled by gatekeeper gk-ny:my-gatekeeper(config-gk)#zone prefix gk-ny 212.......

When my-gatekeeper is asked to admit a call to destination address 2125551111, it knows to send the location request to gk-ny.

However, once the query gets to gk-ny, gk-ny still needs to resolve the address so that the call can be sent to its final destination. There could be an H.323 endpoint that has registered with gk-ny with that E.164 address, in which case gk-ny would return the IP address for that endpoint. However, it is more likely that the E.164 address belongs to a non-H.323 device, such as a telephone or an H.320 terminal.

Because non-H.323 devices do not register with gatekeepers, gk-ny has no knowledge of which device the address belongs to or which type of device it is, so the gatekeeper cannot decide which gateway should be used for the hop off to the non-H.323 device. (The term hop off refers to the point at which the call leaves the H.323 network and is destined for a non-H.323 device.)

Note The number of zone prefixes defined for a directory gatekeeper that is dedicated to forwarding LRQs, and not for handling local registrations and calls, should not exceed 10,000; 4 MB of memory must be dedicated to describing zones and zone prefixes to support this maximum number of zone prefixes. The number of zone prefixes defined for a gatekeeper that handles local registrations and calls should not exceed 2000.

Cisco IOS Voice, Video, and Fax Configuration Guide

VC-294

Page 6
Image 6
Cisco Systems VC-289 manual Interzone Routing Using E.164 Addresses, VC-294

VC-289 specifications

Cisco Systems has long been a leader in networking technology, and among its diverse range of products is the VC-289. Designed specifically for enhanced performance in high-demand environments, the VC-289 serves a critical role in supporting the modern networking infrastructure.

One of the standout features of the VC-289 is its scalability. The device is engineered to easily accommodate expanded workloads, ensuring that organizations can grow without the need for frequent upgrades. This scalability is complemented by Cisco's commitment to backward compatibility, allowing businesses to integrate new systems with existing setups seamlessly.

In terms of performance, the VC-289 boasts impressive processing power. With advanced multi-core architecture, it is capable of handling multiple data streams simultaneously, making it ideal for environments that require consistent data flow, such as cloud computing and IoT applications. The device’s high throughput ensures that users experience minimal latency, facilitating quick data transfers even during peak usage times.

Security is another key characteristic of the VC-289. Cisco has integrated robust security protocols that protect against various cyber threats. Through features such as advanced encryption standards and intrusion prevention systems, organizations can ensure that sensitive data remains secure and is not compromised during transmission.

Another notable technology within the VC-289 is its support for software-defined networking (SDN) capabilities. This allows for more flexible network management, enabling IT teams to adapt the network according to evolving business needs. The ability to programmatically control the network also means that businesses can implement changes more rapidly, reducing downtime and improving overall productivity.

The VC-289 is designed with energy efficiency in mind, featuring power-saving modes that help reduce operational costs. This focus on sustainability not only benefits the environment but also appeals to organizations striving to meet corporate social responsibility objectives.

In conclusion, the Cisco Systems VC-289 stands as an exemplary solution for modern networking challenges. With its scalability, performance capabilities, enhanced security features, SDN support, and energy efficiency, it meets the demands of today's fast-paced and ever-evolving technological landscape. Organizations looking to invest in a robust networking solution would do well to consider the VC-289 as a cornerstone of their infrastructure.