Instruction Manual

IM-106-880, Rev 1.0 January 2007

OCX 8800

ELECTRICAL

All wiring must conform to local and national codes. For reference, factory

INSTALLATION

wired solenoid power connections are shown in Figure 2-4.

 

 

 

 

 

 

 

 

Disconnect and lock out power before connecting the unit to the power supply. Failure to lock out power could result in serious injury or death.

Install all protective equipment covers and safety ground leads after installation. Failure to install covers and ground leads could result in serious injury or death.

To meet the Safety Requirements of IEC 1010 (EC requirement), and ensure safe operation of this equipment, connection to the main electrical power supply must be made through a circuit breaker (min 10 A) in close proximity and marked for this equipment which will disconnect all current-carrying conductors during a fault situation. This circuit breaker should also include a mechanically operated isolating switch. If not, then another external means of disconnecting the supply from the equipment should be located close by. Circuit breakers or switches must comply with a recognized standard such as IEC 947.

The OCX88A can be installed in general purpose areas only. Do not install the OCX88A in hazardous areas.

2-7

Page 27
Image 27
Emerson 8800 instruction manual Electrical, Installation

8800 specifications

The Emerson 8800, a pivotal instrument in industrial automation, stands out for its robust features and cutting-edge technologies. Designed to enhance process efficiency and reliability, this device is integral to numerous industries, including oil and gas, chemical, and power generation.

One of the standout features of the Emerson 8800 is its advanced control capabilities. It incorporates a highly flexible control architecture that supports a wide variety of control schemes. This adaptability allows engineers to implement customized solutions tailored to specific process requirements. Additionally, the 8800 series includes integrated predictive diagnostics that continually monitor system performance, alerting operators to potential issues before they escalate into serious problems.

The technology powering the Emerson 8800 is equally impressive. Equipped with state-of-the-art microprocessors, it can handle complex calculations and data processing with remarkable speed and accuracy. The device supports multiple communication protocols, including Foundation Fieldbus, HART, and Modbus. This flexibility ensures seamless integration with existing systems, thereby enhancing data sharing and communication between devices.

Moreover, the Emerson 8800 features a user-friendly interface that simplifies operation and monitoring. The intuitive display allows operators to easily navigate through various settings and real-time data, promoting better decision-making and faster response times. This ergonomic design enhances usability in high-pressure environments, ultimately contributing to improved safety and operational efficiency.

Another key characteristic of the Emerson 8800 is its durability and reliability. Built to withstand the rigors of industrial environments, the device boasts a robust enclosure, ensuring protection against dust, moisture, and extreme temperatures. This reliability minimizes the risk of downtime, making it a cost-effective choice for industries where uptime is critical.

In summary, the Emerson 8800 emerges as a powerhouse in the realm of industrial automation. With its advanced control systems, diverse communication capabilities, user-friendly interface, and rugged design, it embodies efficiency and reliability. As industries continue to evolve, the Emerson 8800 stands ready to meet the challenges of modern automation, driving innovation and productivity in complex environments.