OCX 8800

Instruction Manual

IM-106-880, Rev 1.0 January 2007

Verify Configuration

There are three switches on the microprocessor board which are user configurable for the OCX 8800 (Figure 3-1). SW1 determines if the O2 4-20 mA signal is internally or externally powered. SW2 determines if the COe 4-20 mA signal is internally or externally powered. SW3 sets the rail limits for the O2 and COe 4-20 mA signals and configures the sample line heater control circuit. All switches are accessible through holes in the electronics box.

Remove power from the OCX 8800 before changing defaults. If defaults are changed under power, damage to the electronics may occur.

Verify that the following switch settings are correct for your OCX 8800 installation:

SW1 The two settings are internally or externally powering the O2 4-20 mA signal. The factory setting is for the O2 4-20 mA signal to be internally powered.

SW2 The two settings are internally or externally powering the COe 4-20 mA signal. The factory setting is for the COe 4-20 mA signal to be internally powered.

SW3 The factory sets this switch as follows:

Position 1 determines the O2 4-20 mA signal rail limit. The settings are high, 21.1 mA, or low, 3.5 mA. The factory setting is low, 3.5 mA.

Position 2 determines the COe 4-20 mA signal rail limit. The settings are high, 21.1 mA, or low, 3.5 mA. The factory setting is high, 21.1 mA.

Positions 3 and 4 must be set as shown for proper software control of the device heaters.

3-2

Page 38
Image 38
Emerson 8800 instruction manual Verify Configuration

8800 specifications

The Emerson 8800, a pivotal instrument in industrial automation, stands out for its robust features and cutting-edge technologies. Designed to enhance process efficiency and reliability, this device is integral to numerous industries, including oil and gas, chemical, and power generation.

One of the standout features of the Emerson 8800 is its advanced control capabilities. It incorporates a highly flexible control architecture that supports a wide variety of control schemes. This adaptability allows engineers to implement customized solutions tailored to specific process requirements. Additionally, the 8800 series includes integrated predictive diagnostics that continually monitor system performance, alerting operators to potential issues before they escalate into serious problems.

The technology powering the Emerson 8800 is equally impressive. Equipped with state-of-the-art microprocessors, it can handle complex calculations and data processing with remarkable speed and accuracy. The device supports multiple communication protocols, including Foundation Fieldbus, HART, and Modbus. This flexibility ensures seamless integration with existing systems, thereby enhancing data sharing and communication between devices.

Moreover, the Emerson 8800 features a user-friendly interface that simplifies operation and monitoring. The intuitive display allows operators to easily navigate through various settings and real-time data, promoting better decision-making and faster response times. This ergonomic design enhances usability in high-pressure environments, ultimately contributing to improved safety and operational efficiency.

Another key characteristic of the Emerson 8800 is its durability and reliability. Built to withstand the rigors of industrial environments, the device boasts a robust enclosure, ensuring protection against dust, moisture, and extreme temperatures. This reliability minimizes the risk of downtime, making it a cost-effective choice for industries where uptime is critical.

In summary, the Emerson 8800 emerges as a powerhouse in the realm of industrial automation. With its advanced control systems, diverse communication capabilities, user-friendly interface, and rugged design, it embodies efficiency and reliability. As industries continue to evolve, the Emerson 8800 stands ready to meet the challenges of modern automation, driving innovation and productivity in complex environments.