4 Operating the Power Supply Remotely

Service requests are enabled for control sockets using the Service Request Enable register. Once service requests have been enabled, the client program listens on the control connection. When SRQ goes true the instrument will send the string “SRQ +nn” to the client. The “nn” is the status byte value, which the client can use to determine the source of the service request.

Configuring the LAN Parameters

To configure the LAN parameters from the instrument’s Web server, launch the Web server as previously described, and click on the View

&Modify Configuration tab on the left side of the page. Then click on the Modify Configuration button on the top of the page. The following screen lets you modify the LAN parameters:

The configurable LAN parameters are described as follows:

Obtain IP This parameter configures the addressing of the instrument. Auto

Address automatically configures the addressing. When selected, the instrument first tries to obtain an IP address from a DHCP server. If a DHCP server is found, the DHCP server assigns an IP address, Subnet Mask, and Default Gateway to the instrument. If a DHCP server is unavailable, the instrument tries to obtain an IP address using AutoIP. AutoIP automatically assigns an IP address, Subnet Mask, and Default Gateway addresses on networks that do not have a DHCP server. Manual allows you to manually configure the addressing of the instrument by entering values in the following three fields.

IP Address This value is the Internet Protocol (IP) address of the instrument. An IP address is required for all IP and TCP/IP communications with the instrument. An IP Address consists of 4 decimal numbers separated by periods. Each decimal number ranges from 0 through 255.

54

Series N5700 User’s Guide

Page 54
Image 54
Agilent Technologies 5751A, 5752A, 5744A, 5743A, 5748A, 5741A, 5746A, 5742A, 5745A, 5747A, 5749A Configuring the LAN Parameters

5751A, 5744A, 5743A, 5750A, 5749A specifications

Agilent Technologies has been a leader in electronic measurement and analysis, with a suite of powerful instruments that cater to various applications in research, development, and manufacturing. Among these, the Agilent 5746A, 5745A, 5741A, 5748A, and 5742A models stand out for their advanced capabilities and features.

The Agilent 5746A is a high-performance signal analyzer that excels in time and frequency domain analysis. This device offers a wide frequency range and exceptional dynamic range, making it suitable for both RF and microwave applications. Its advanced digital signal processing allows for high-resolution spectrum analysis and real-time signal processing, which is essential for engineers and researchers working on complex signals.

The Agilent 5745A is known for its versatility as a multifunctional signal generator. It combines the functionalities of a vector signal generator with the precision of a traditional oscillator. This model provides high-quality waveform generation for a variety of modulation schemes, making it ideal for testing communication systems and conducting research in advanced modulation techniques.

The Agilent 5741A is a precision power meter that offers accurate measurements of RF power in a compact format. It is equipped with state-of-the-art sensing technology that ensures reliable and repeatable measurements. The 5741A is particularly useful for monitoring power levels in transmitters and receivers, and its intuitive interface makes it user-friendly for both novices and experienced professionals.

For those focused on harmonic and intermodulation distortion analysis, the Agilent 5748A provides exceptional performance. This model allows users to analyze distortion products in various devices with precision, helping in the design and testing of amplifiers and other RF components. Its comprehensive sweep functionality enables users to observe the behavior of devices across a wide frequency range.

Finally, the Agilent 5742A complements the range with its dedicated spectrum analyzing capabilities. Offering high sensitivity and ability to capture short-lived events, this model is optimal for monitoring transient signals. The 5742A is frequently used in the telecommunications sector to ensure signal integrity and compliance with regulatory standards.

Together, these Agilent Technologies instruments provide a comprehensive toolkit for professionals in electronics and telecommunications, enabling detailed analysis, accurate measurements, and advanced signal generation. Their integration of modern technologies ensures that users can tackle the complexities of today’s electronic environments with confidence and precision.