ISAMAX/IDAMAX/IIAMAX/ICAMAX/IZAMAX | Index of maximum of magnitudes |
Legacy BLAS routines
Name ISAMAX/IDAMAX/IIAMAX/ICAMAX/IZAMAX
Index of maximum of magnitudes
Purpose Given a real or integer vector x of length n, ISAMAX, IDAMAX, or IIAMAX determines the index of the element of the vector of maximum magnitude. Specifically, the subprograms determine the smallest index i such that
|
| |
|
|
| |
|
|
|
| |||
xi |
| = max |
| x j |
| : j = 1, 2, …, n |
|
|
|
Given a complex vector x of length n, ICAMAX or IZAMAX determines the smallest index i:
Re( xi) + Im( xi) = max( Re( x j) + Im( x j) : j = 1, 2, …, n)
where Re(xi) and Im(xi) are the real and imaginary parts of xi, respectively. The usual definition of complex magnitude is
| + Im( xi)2 | 1 ⁄ 2 |
Re( xi)2 | | |
|
| |
This definition is not used because of computational speed. If the index i is used for pivot selection in matrix factorization, no significant difference in numerical stability should result.
The vector can be stored in a
Usage | VECLIB: |
|
| INTEGER*4 | i, ISAMAX, n, incx |
| REAL*4 | x(lenx) |
| i = ISAMAX(n, x, incx) | |
| INTEGER*4 | i, IDAMAX, n, incx |
| REAL*8 | x(lenx) |
| i = IDAMAX(n, x, incx) | |
| INTEGER*4 | i, IIAMAX, n, incx, x(lenx) |
i = IIAMAX(n, x, incx)
40HP MLIB User’s Guide