Index of minimum of magnitudes | ISAMIN/IDAMIN/IIAMIN/ICAMIN/IZAMIN |
Name ISAMIN/IDAMIN/IIAMIN/ICAMIN/IZAMIN
Index of minimum of magnitudes
Purpose Given a real or integer vector x of length n, ISAMIN, IDAMIN, or IIAMIN determines the index of element of the vector of minimum magnitude. Specifically, the subprograms determine the smallest index i such that
xi = min( x j : j = 1, 2, …, n)
Given a complex vector x of length n, ICAMIN or IZAMIN determines the smallest index i:
|
|
| |
|
|
|
| |
Re(x | )+Im(x | ) | = min Re(x | j | )+Im(x | j | ) : j | = 1, 2, ..., n |
i | i |
| |
|
| |
where Re(xi) and Im(xi) are the real and imaginary parts of xi, respectively. The usual definition of complex magnitude is
| + Im( xi)2 | 1 ⁄ 2 |
Re( xi)2 | | |
|
| |
This definition is not used because of computational speed.
The vector can be stored in a
Usage | VECLIB: |
|
| INTEGER*4 | i, ISAMIN, n, incx |
| REAL*4 | x(lenx) |
| i = ISAMIN(n, x, incx) | |
| INTEGER*4 | i, IDAMIN, n, incx |
| REAL*8 | x(lenx) |
| i = IDAMIN(n, x, incx) | |
| INTEGER*4 | i, IIAMIN, n, incx, x(lenx) |
| i = IIAMIN(n, x, incx) | |
| INTEGER*4 | i, ICAMIN, n, incx |
| COMPLEX*8 | x(lenx) |
| i = ICAMIN(n, x, incx) | |
| INTEGER*4 | i, IZAMIN, n, incx |
| COMPLEX*16 | x(lenx) |
i = IZAMIN(n, x, incx)
Chapter 2 Basic Vector Operations 43