SAMAX/DAMAX/IAMAX/SCAMAX/DZAMAX | Maximum of magnitudes |
Name SAMAX/DAMAX/IAMAX/SCAMAX/DZAMAX
Maximum of magnitudes
Purpose Given a real or integer vector x of length n, SAMAX, DAMAX, or IAMAX computes the l∞ norm of x, that is, the maximum of the magnitudes of the elements of the vector
s= x ∞ = max( xi : i = 1, 2, …, n).
Given a complex vector x of length n, SCAMAX or DZAMAX computes
s= max( Re( xi) + Im( xi) : i = 1, 2, …, n).
where Re(xi) and Im(xi) are the real and imaginary parts of xi, respectively. The usual definition of the maximum of magnitudes of a complex vector is
|
|
|
|
|
|
|
|
|
| |
| 2 |
| 2 | } | 1 ⁄ 2 |
| |
t = |
|
|
| x |
|
|
| ∞ | = | max | { Re( xi) |
| + Im( xi) |
|
| : i | = 1, 2, …, n . | |
|
|
|
|
|
|
|
| |||||||||||
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
|
|
| |
s is computed instead of t because, with its lack of square roots, it is faster to compute. Because t ≤ s ≤ 2t , s is often an acceptable substitute for t.
The vector can be stored in a
Usage | VECLIB: |
|
| INTEGER*4 | n, incx |
| REAL*4 | s, SAMAX, x(lenx) |
| s = SAMAX(n, x, incx) | |
| INTEGER*4 | n, incx |
| REAL*8 | s, DAMAX, x(lenx) |
| s = DAMAX(n, x, incx) | |
| INTEGER*4 | n, incx, s, IAMAX, x(lenx) |
| s = IAMAX(n, x, incx) | |
| INTEGER*4 | n, incx |
| REAL*4 | s, SCAMAX |
| COMPLEX*8 | x(lenx) |
s = SCAMAX(n, x, incx)
56HP MLIB User’s Guide