INSTRUCCIONES DE CORTE GENERALES

REGLAS GENERALES PARA EL TALADO DE ARBOLES:

Normalmente el talado consiste en 2 operaciones de corte principales, haciendo la ranura (C) y realizando el corte de talado (D).

Empiece haciendo el corte de ranura (C) superior en la parte del árbol apuntando a la dirección de caída (E). Asegúrese de no hacer el corte inferior muy profundo den- tro del tronco.

La ranura (C) deberá ser lo bastante profunda para crear una articulación (F) de suficiente anchura y fuerza. La ranura deberá ser lo suficiente ancha para dirigir la caída del árbol por el mayor tiempo posible.

ADVERTENCIA: Antes de

realizar el corte final, siempre revise el área de especta- dores, animales u obstáculos.

G

H

3/4

1/4

E

C

F

D

3-5cm

Fig.19

Fig.18

ADVERTENCIA: N u n c a

camine en

frente de un árbor que haya sido ranurado. Realice el corte de talado (D) desde la otra parte del árbol y 3-5cm (1.5 - 2.0”) arriba del borde de la ranura (C) (Figura 18).

Nunca corte completamente a travéz del tronco. Siempre deje una articulación. La articulación guía el árbol. Si el tronco es completamente cortado a travéz, se pierde el control sobre la dirección de la caída.

Inserte una cuña o una barra de talado en el corte antes de que el árbol se vuelva inestable y empiece a moverse. Esto prevendrá que la barra guía se doble en el corte si usted juzga mal la dirección de la caída. Asegúrese de que ningún espectador haya entrado dentro del alcance del árbol antes de empujarlo.Insert a wedge or felling lever in the cut well before the tree becomes unstable and starts to move. This will prevent the guide bar from binding in the felling cut if you have misjudged the falling direction. Make sure no bystanders have entered the range of the falling tree before you push it over.

Fig.20

CORTE DE TALADO:

1.Utilize cuñas de madera o plástico (G) para prevenir el doblamiento de la barra o cadena (H) en el corte. Las cuñas también controlan la caída (Figura 18).

2.Cuando el diámetro de la madera es más grande que la longitud de la barra, realice 2 cortes como se muestra (Figura 19).

Al tiempo que

ADVERTENCIA: el corte de

talado se acerca a la articulación, el árbol deberá de empezar a caer. Cuando el árbol empiece a caer, remueva la sierra del corte, apague el motor, ponga la sierra en el suelo, y abandone el área a lo largo del sendero de reti- rada (Figura 17).

60

Page 61
Image 61
MTD PS manual Reglas Generales Para EL Talado DE Arboles, Corte DE Talado

PS specifications

MTD PS, or Machine Translation Deep Post-Editing System, is an innovative solution designed to improve the accuracy and quality of machine-generated translations. This system is particularly instrumental for businesses and organizations that rely on multilingual communication and require high-quality translations for documents, websites, and other materials.

One of the main features of MTD PS is its deep learning architecture, which employs neural networks to analyze and refine machine-generated translations. This technology allows the system to understand linguistic nuances, context, and semantics, resulting in translations that are not only grammatically correct but also culturally relevant. The adaptability of deep learning means that the system can continuously improve over time by learning from user feedback and various language data.

Another significant characteristic of MTD PS is its user-friendly interface. Designed with usability in mind, the system allows post-editors to review and enhance translations with ease. Suggestions for improvements are generated in real-time, enabling human translators to make quick decisions and apply necessary changes. This collaboration between humans and machines amplifies productivity while maintaining high standards of quality.

MTD PS integrates advanced natural language processing (NLP) technologies, which are crucial for understanding and generating human-like text. With features such as context-aware formatting and terminology management, the system ensures consistency across different translations, streamlining the localization process. NLP capabilities also facilitate the handling of idiomatic expressions and jargon specific to certain fields, enabling the system to cater to various industries.

Additionally, MTD PS is equipped with extensive data analytics features. It allows users to track performance metrics such as translation accuracy and editor efficiency. This data-driven approach helps organizations evaluate the effectiveness of their translation processes and make informed decisions about future localization strategies.

In summary, MTD PS is a powerful tool that leverages deep learning, NLP technologies, and user-centric design to enhance the quality of machine translations. Its ability to adapt, learn, and provide actionable insights makes it an invaluable asset for a wide range of applications in the global marketplace. As businesses continue to expand their reach across borders, systems like MTD PS will play a pivotal role in ensuring effective communication and fostering collaboration across cultures.