Novatel OM-20000077 user manual GPS Signal Multipath vs. Increased Antenna Height, Antenna Designs

Page 74

Appendix G

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

GPS Overview

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 26: GPS Signal Multipath vs. Increased Antenna Height

When the antenna is in an environment with obstructions and reflective surfaces in the vicinity, it is advantageous to mount the antenna as high as possible to reduce the obstructions, as well as reception from reflective surfaces, as much as possible. See Figure 26 above for an example.

Water bodies are extremely good reflectors of GPS signals. Because of the short wavelengths at GPS frequencies, even small ponds and water puddles can be a strong source of multipath reception, especially for low angle satellites. Thus, it can be concluded that water bodies such as lakes and oceans are among the most troublesome multipath environments for low angle signal reception. Obviously, water body reflections are a constant problem for ocean going vessels.

G.4.3.2 Antenna Designs

Low angle reflections, such as from water bodies, can be reduced by careful selection of the antenna design. For example, flat plate microstrip patch antennas have relatively poor reception properties at low elevation angles near their radiation pattern horizon.

Quadrifilar helix antennas and other similar vertically high profile antennas tend to have high radiation gain patterns at the horizon. These antennas, in general, are more susceptible to the problems resulting from low angle multipath reception. So, for marine vessels, this type of antenna encourages multipath reception.

However, the advantages of good low angle reception also means that satellites can be acquired more easily while rising in the horizon. As well, vessels subject to pitch and roll conditions will experience fewer occurrences of satellite loss of lock.

Examples of the above antennas may be seen in Figure 27 on Page 75.

A good antenna design will also incorporate some form of left hand circular polarization (LHCP) rejection. Multipath signals change polarization during the refraction and reflection process. This means that generally, multipath signals may be LHCP oriented. This property can be used to advantage by GPS antenna designers. If a GPS antenna is well designed for RHCP polarization, then LHCP multipath signals will automatically be attenuated somewhat during the induction into the antenna. To further enhance performance, antennas can be designed to increase the rejection of LHCP signals.

74

SUPERSTAR II User Manual Rev 3

Image 74
Contents Superstar Proprietary Notice Table of Contents Appendices Tables Figures Software License Software License Firmware Updates Contact InformationElectrostatic Discharge CE Notice Warranty Policy Related Publications Congratulations ScopeRelated Publications Introduction Superstar II GPS CardFlexPak-SSII Introduction ChapterChapter Introduction System Architecture Receiver SpecificationsPhysical Characteristics Radio Frequency RF SectionOptional LNA Power Supply Enclosure and Wiring HarnessPrincipal Power Supply GPS AntennaInstallation Typical System Configuration Reference DescriptionEquipment Interconnection Chapter InstallationElectrostatic Discharge Serial ConnectionInstallation Chapter Installation ConsiderationsPower Connection Antenna LocationData Link Connectors and Connector Pins Assignment1 J1 Interface and Power Connector Base Station and Rover Units SeparationRF Connector J2 Serial Data InterfaceMemory Back-Up Preamplifier Power Pass-Through Antenna SupplyProtocol Selection and Non Volatile Memory RF InputUse of Discretes Discretes IP2 and IP3 functionsNon-Volatile Memory Data Default ConfigurationNon Volatile Memory Installation Overview Description ReferenceTypical Operational Configuration Reference Description OperationGetting Started Serial Port Default SettingsCommunications with the Receiver Operation ChapterOperational Information Power-Up InformationBoot Information Chapter OperationReceiver States Configurable ParametersData Requests Self-Test Mode Dead-Reckoning Mode Built-In Status TestsDatum Support RTCM1 Differential GPS Corrections Fixed Message FormatsRTCM-Format Messages Chapter Message Formats RTCM2 Delta Differential GPS Corrections FixedRTCM9 Partial Satellite Set Differential Corrections Nmea Format Data Messages Message Formats ChapterSingle-Point or Autonomous GPS System ErrorsPositioning Modes of Operation Satellite-Based Augmentation System Sbas Positioning Modes of Operation ChapterChapter Positioning Modes of Operation Sbas ReceiverSbas Messages Positioning Modes of Operation Chapter Troubleshooting Cable Lengths Vs. GainTroubleshooting Chapter Superstar II Family Performance Technical SpecificationsAppendix a Technical Specifications Appendix a Output MessagesAppendix a Technical Specifications Mechanical DrawingConnector Pin Assignment J1 Interfaces and Power Connector Pin Assignment3 I/O Electrical Characteristics O Signals Voltage LimitsFlexPak-SSII Specifications Appendix BFlexPak Status Indicators Status IndicatorsAppendix B FlexPak-SSII Specifications Port Pin-OutsCables FlexPak-SSII Specifications Appendix BAutomobile Power Adapter Cable NovAtel part number 3.2 13-Pin Deutsch to DB9 Serial Cable NovAtel part number FlexPak 13-Pin Serial CableDevelopment Kit Setup and OperationNormal Setup DescriptionDgps Setup with the FlexPak-SSII Differential GPS SetupStarView Software Installation Appendix C Antenna SpecificationsCoaxial Cable Specifications Cable SelectionAntenna Gain Depending on Cable Length Required Antenna Specifications Appendix CGeodetic Active Antenna Typical Current Consumption Versus Antenna GainPassive Antenna Appendix C Antenna SpecificationsActive Antenna Recommended Geodetic Active AntennasPassive Antenna Specifications Patch Element GPS Antenna 201-990146-716 MCX, +12 dBGPS Antenna 201-990147-606 +26 dB Antenna Specifications Appendix C Appendix D Standards/ReferencesTime-To-First-Fix Ttff Appendix ETtff and Satellite Acquisition Re-AcquisitionUpdating Receiver Firmware Utility InstallationAppendix F System RequirementsUpdating Receiver Firmware Appendix F Starting Software and Options UpdateRegistration Key Accepted Programming Success Appendix F Updating Receiver FirmwareGPS System Design Appendix GGPS Overview Space SegmentUser Segment Height RelationshipsControl Segment Appendix G GPS OverviewGPS Positioning GPS Overview Appendix GSingle-Point vs. Relative Positioning Accuracy versus Precision1Real-time vs. Post-mission Data Processing MultipathStatic vs. Kinematic Positioning Why Does Multipath Occur? Consequences of Multipath ReceptionHardware Solutions For Multipath Reduction Antenna Site SelectionGPS Signal Multipath vs. Increased Antenna Height Antenna DesignsGPS Overview Appendix G Appendix H Glossary of TermsGlossary of Terms Appendix H Appendix H Glossary of Terms Glossary of Terms Appendix H Appendix AcronymsAcronyms Appendix Appendix Acronyms Index GEO, Sbas IndexIndex Index OM-20000077 Rev 2004/03/11