Carrier 48TCA04---A12 Smoke Detectors, System, Controller, Unit Connect Primary Transformer

Page 15

breaker requirements and disconnect switch size and location. Route 125-v power supply conductors into the bottom of the utility box containing the duplex receptacle.

Unit-powered type: A unit-mounted transformer is factory-installed to stepdown the main power supply voltage to the unit to 115-v at the duplex receptacle. This option also includes a manual switch with fuse, located in a utility box and mounted on a bracket behind the convenience outlet; access is through the unit’s control box access panel. See Fig. 14.

The primary leads to the convenience outlet transformer are not factory-connected. Selection of primary power source is a customer-option. If local codes permit, the transformer primary leads can be connected at the line-side terminals on a unit-mounted non-fused disconnect or HACR breaker switch; this will provide service power to the unit when the unit disconnect switch or HACR switch is open. Other connection methods will result in the convenience outlet circuit being de-energized when the unit disconnect or HACR switch is open. See Fig. 15.

CO8283

Fig. 15 - Powered Convenience Outlet Wiring

UNIT

CONNECT

PRIMARY

TRANSFORMER

VOLTAGE

AS

CONNECTIONS

TERMINALS

 

 

 

 

208,

240

L1: RED +YEL

H1 + H3

230

L2: BLU + GRA

H2 + H4

 

 

 

 

 

 

 

L1: RED

H1

460

480

Splice BLU + YEL

H2 + H3

 

 

L2: GRA

H4

 

 

 

 

575

600

L1: RED

H1

L2: GRA

H2

 

 

 

 

 

 

Duty Cycle: The unit-powered convenience outlet has a duty cycle limitation. The transformer is intended to provide power on an intermittent basis for service tools,

lamps, etc; it is not intended to provide 15-amps loading for continuous duty loads (such as electric heaters for overnight use). Observe a 50% limit on circuit loading above 8-amps (i.e., limit loads exceeding 8-amps to 30 minutes of operation every hour).

Maintenance: Periodically test the GFCI receptacle by pressing the TEST button on the face of the receptacle. This should cause the internal circuit of the receptacle to trip and open the receptacle. Check for proper grounding wires and power line phasing if the GFCI receptacle does not trip as required. Press the RESET button to clear the tripped condition.

Fuse on powered type: The factory fuse is a Bussman “Fusetron” T-15, non-renewable screw-in (Edison base) type plug fuse.

Using unit-mounted convenience outlets: Units with unit-mounted convenience outlet circuits will often require that two disconnects be opened to de-energize all power to the unit. Treat all units as electrically energized until the convenience outlet power is also checked and de-energization is confirmed. Observe National Electrical Code Article 210, Branch Circuits, for use of convenience outlets.

SMOKE DETECTORS

Smoke detectors are available as factory-installed options on 48TC models. Smoke detectors may be specified for Supply Air only or for Return Air without or with economizer or in combination of Supply Air and Return Air. Return Air smoke detectors are arranged for vertical return configurations only. All components necessary for operation are factory-provided and mounted. The unit is factory-configured for immediate smoke detector shutdown operation; additional wiring or modifications to unit terminal board may be necessary to complete the unit and smoke detector configuration to meet project requirements.

System

The smoke detector system consists of a four-wire controller and one or two sensors. Its primary function is to shut down the rooftop unit in order to prevent smoke from circulating throughout the building. It is not to be used as a life saving device.

Controller

The controller (see Fig. 16) includes a controller housing, a printed circuit board, and a clear plastic cover. The controller can be connected to one or two compatible duct smoke sensors. The clear plastic cover is secured to the housing with a single captive screw for easy access to the wiring terminals. The controller has three LEDs (for Power, Trouble and Alarm) and a manual test/reset button (on the cover face).

48TC

15

Image 15
Contents Safety Considerations Table of ContentsWhat to do if you smell gas Unit Arrangement and AccessRoutine Maintenance GeneralSeasonal Maintenance Supply Fan Belt-Drive Supply FAN Blower SectionCondenser Coil Maintenance and Cleaning Recommendation CoolingCondenser Coil One-Row Coil Periodic Clean Water RinseRoutine Cleaning of Coil Surfaces Remove Surface Loaded FibersEvaporator Coil Metering Devices Refrigerant System Pressure Access PortsCleaning the Evaporator Coil Evaporator CoilNo Charge To Use Cooling Charging ChartsPuronr R-410A Refrigerant Refrigerant ChargeSize Designation Nominal Tons Reference Cooling Charging ChartsCooling Charging Charts C08229 C08437 C08438 C08439 Problem Cause Remedy Cooling Service AnalysisCompressor Condenser-Fan AdjustmentTroubleshooting Cooling System Convenience OutletsUnit Connect Primary Transformer Smoke DetectorsSystem ControllerSmoke Detector Locations SensorFiop Smoke Detector Wiring and Response Completing Installation of Return Air Smoke SensorSensor and Controller Tests Sensor Alarm TestSensor Alarm Test Procedure Controller Alarm TestTo Configure the Dirty Sensor Test Operation Controller Alarm Test ProcedureDirty Controller Test Procedure Dirty Sensor Test ProcedureDetector Cleaning Troubleshooting Relief Device Protective DevicesGAS Heating System Compressor ProtectionLiquid Propane Supply Line Pressure Ranges Fuel Types and PressuresNatural Gas Supply Line Pressure Ranges Natural Gas Manifold Pressure RangesCombustion-Air Blower Flue Gas PassagewaysMain Burners Cleaning and AdjustmentCheck Unit Operation and Make Necessary Adjust- ments Burners and IgnitersBurner Ignition Limit SwitchOrifice Replacement LED Error Code DescriptionLED Indication Error Code Description Red LED-Status Orifice Sizes IGC ConnectionsAltitude Compensation* A04-A07 Cont. Altitude Compensation* A08-A12LP Orifice Troubleshooting Heating System Minimum heating entering air temperatureAltitude Compensation* A04-A06 Low NOx Units Problem Cause Remedy Heating Service AnalysisIGC IGC Board LED Alarm CodesPremierLink Controller Premierlinkt ControlPremierLink Wiring Schematic 55 Space Temperature Sensor Wiring PremierLink Sensor Usage Space Sensor Mode56 Internal Connections Thermostat ModeLctb Indoor CO2 Sensor 33ZCSENCO2 Connections PremierLink Filter Switch Connection RTU-MP Control System Recommended CablesColor Code Recommendations RTU-MP Multi-Protocol Control Board RTU-MP System Control Wiring Diagram Outputs RTU-MP Controller Inputs and OutputsRTU-MP T-55 Sensor Connections Space Temperature SPT SensorsIAQ Sensor SEN J4-2 COM J4-3 24 VAC Connecting Discrete Inputs Power Exhaust outputCommunication Wiring Protocols RTU-MP Troubleshooting LEDs on the RTU-MP show the status of certain functions LEDsTroubleshooting Alarms BACnet MS/TP AlarmsRTU-MP Driver Code Name Meaning Basic Protocol TroubleshootingModbus Manufacture DateEconoMi$er IV Component Locations Economizer SystemsEconoMi$er IV Wiring EconoMi$er IV Input/Output Logic EconoMi$erOutdoor Dry Bulb Changeover Supply Air Temperature SAT SensorOutdoor Air Lockout Sensor EconoMi$er IV Control ModesOutdoor Enthalpy Changeover Return Air Temperature or Enthalpy Sensor Mounting LocationExhaust Setpoint Adjustment Indoor Air Quality IAQ Sensor InputMinimum Position Control Demand Control Ventilation DCV Damper MovementThermostats Occupancy ControlDifferential Enthalpy CO2 Sensor ConfigurationEconoMi$er IV Sensor Usage EconoMi$er IV PreparationWiring Diagrams 48TC Typical Unit Wiring Diagram Power A06, 208/230-3-60 48TC Unit Wiring Diagram Control A06 START-UP, General PRE-START-UPVentilation Continuous Fan CoolingMain Burners HeatingPerform System Check-Out Field Service TestSTART-UP, Premierlink Controls START-UP, RTU-MP ControlConfiguration Input 1 Function InputsInput Space Sensor TypeCooling, Unit With EconoMi$er Operating SequencesBase Unit Controls Cooling, Units Without Economizer Heating, Units Without EconomizerPremierLink Control Heating With EconoMi$er48TC Available Cooling Stages OAT ≤ SPT 48TC 48TC Scheduling Loadshed Command Gas and Electric Heat UnitsRTU-MP Sequence of Operation Linkage ModesBAS On/Off Always Occupied Default OccupancyLocal Schedule BACnet SchedulePower Exhaust EconomizerIndoor Air Quality Fastener Torque Values Demand LimitTorque Values Position Number Appendix I. Model Number SignificanceModel Number Nomenclature Serial Number FormatPhysical Data Cooling Tons Appendix II. Physical Data48TC*A08 48TC*A09 48TC*A12 Physical Data CoolingPhysical Data Heating LOW General Fan Performance Notes Appendix III. FAN PerformanceTon Horizontal Supply Ton Vertical SupplyCFM RPM BHP Medium Static Option High Static Option 48TC**05 48TC**05 Phase Ton Horizontal Supply1486 48TC**05 Phase Ton Vertical Supply1493 15061482 48TC**0648TC**06 Phase Ton Vertical Supply 48TC**06 Phase Ton Horizontal Supply48TC**07 Phase Ton Horizontal Supply1122 1162 11071124 1103 11431093 1133 4971099 11161273 5791263 1247Unit MOTOR/DRIVE Motor Pulley Turns Open Combo Pulley AdjustmentType Appendix IV. Electrical DataIFM Range RLA LRAFLA Appendix IV. Electrical DataFull IFM RangeEFF at RLA LRAType DISC. Size Combustion PowerNOM IFM No P.E FAN Motor ExhaustNOM Unbalanced 3-Phase Supply VoltageWiring Diagrams Appendix V. Wiring Diagram List48TC*A04 Outdoor Circuiting Appendix VI. Motormaster Sensor LocationsCatalog No 48TC---2SM 48TC*A09/12 Outdoor CircuitingPreliminary Information Unit START-UP Checklist

48TCA04---A12 specifications

The Carrier 48TCA04---A12 is a high-efficiency rooftop air conditioning unit designed for commercial and industrial applications. Known for its reliability and performance, this model features advanced technologies that cater to diverse climate control needs.

One of the standout features of the Carrier 48TCA04---A12 is its excellent energy efficiency, which adheres to the stringent standards set by the U.S. Environmental Protection Agency. The unit utilizes a highly efficient scroll compressor combined with state-of-the-art heat exchanger technology, allowing it to operate with minimal energy consumption while providing powerful cooling capabilities.

The unit comes equipped with a robust and durable design, built to withstand various environmental conditions. Its weather-resistant cabinet is constructed from high-quality materials, ensuring long-lasting performance even in harsh climates. Additionally, the unit features a galvanized steel structure with a powder-coated finish, further enhancing its resistance to corrosion and wear.

In terms of technologies, the Carrier 48TCA04---A12 incorporates advanced controls that promote optimal performance. The unit supports Carrier's smart connectivity options, facilitating remote monitoring and adjustments via smart devices. This feature ensures convenient energy management and allows maintenance teams to access performance data, leading to proactive service interventions.

Another important characteristic of this unit is its quiet operation. The design includes sound-reducing insulation and a well-engineered airflow system, minimizing noise levels to create a more comfortable indoor environment. This is particularly important for commercial spaces such as offices and retail environments, where a tranquil atmosphere is critical for customer satisfaction and productivity.

The Carrier 48TCA04---A12 also offers diverse application flexibility, making it suitable for various locations, from small retail stores to large warehouses. With several tonnage options available, users can select a model that perfectly aligns with their specific cooling needs. Additionally, the unit can be easily integrated with existing HVAC systems, providing a seamless solution for upgrading or retrofitting older installations.

To sum up, the Carrier 48TCA04---A12 rooftop air conditioning unit stands out due to its exceptional energy efficiency, durable construction, advanced technology, and quiet operation, making it a reliable choice for commercial and industrial cooling solutions. Its flexibility and smart technology integrations ensure that it meets a wide range of climate control requirements effectively.