Carrier 48TCA04---A12 appendix START-UP, Premierlink Controls, START-UP, RTU-MP Control

Page 68

48TC

START-UP, PREMIERLINK CONTROLS

!WARNING

ELECTRICAL OPERATION HAZARD

Failure to follow this warning could result in personal injury or death.

The unit must be electrically grounded in accordance with local codes and NEC ANSI/NFPA 70 (American National Standards Institute/National Fire Protection Association.)

Use the Carrier network communication software to start up and configure the PremierLink controller.

Changes can be made using the ComfortWORKSr software, ComfortVIEWt software, Network Service Tool, System Pilott device, or Touch Pilott device. The System Pilot and Touch Pilot are portable interface devices that allow the user to change system set-up and setpoints from a zone sensor or terminal control module. During start-up, the Carrier software can also be used to verify communication with PremierLink controller.

NOTE: All set-up and setpoint configurations are factory set and field-adjustable.

For specific operating instructions, refer to the literature provided with user interface software.

Perform System Check-Out

1.Check correctness and tightness of all power and communication connections.

2.At the unit, check fan and system controls for proper operation.

3.At the unit, check electrical system and connections of any optional electric reheat coil.

4.Check to be sure the area around the unit is clear of construction dirt and debris.

5.Check that final filters are installed in the unit. Dust and debris can adversely affect system operation.

6.Verify that the PremierLink controls are properly con- nected to the CCN bus.

Initial Operation and Test

Perform the following procedure:

1.Apply 24 vac power to the control.

2.Connect the service tool to the phone jack service port of the controller.

3.Using the Service Tool, upload the controller from address 0, 31 at 9600 baud rate. The address may be set at this time. Make sure that Service Tool is con- nected to only one unit when changing the address.

Memory Reset

DIP switch 4 causes an E-squared memory reset to factory defaults after the switch has been moved from position 0 to position 1 and the power has been restored. To enable the feature again, the switch must be put back to the 0 position and power must be restored; this prevents

subsequent resets to factory defaults if the switch is left at position 1.

To cause a reset of the non-volatile memory (to factory defaults), turn the controller power off if it is on, move the switch from position 1 to position 0, and then apply power to the controller for a minimum of 5 seconds. At this point, no action occurs, but the controller is now ready for the memory to reset. Remove power to the controller again and move the switch from position 0 to position 1. This time, when power is applied, the memory will reset to factory defaults. The controller address will return to bus 0 element 31, indicating that memory reset occurred.

Refer to Installation Instruction 33CS-58SI for full discussion on configuring the PremierLink control system.

START-UP, RTU-MP CONTROL

Field Service Test, explained below, will assist in proper start-up. Configuration of unit parameters, scheduling options, and operation are also discussed in this section.

Field Service Test

The Field Service Test function can be used to verify proper operation of compressors, heating stages, indoor fan, power exhaust fans, economizer, and dehumidification. Use of Field Service Test is recommended at initial system start up and during troubleshooting. See Form 48-50H-T-2T, Appendix A for Field Service Test Mode table.

Field Service Test mode has the following changes from normal operation:

S Outdoor air temperature limits for cooling circuits, economizer, and heating are ignored.

S Normal compressor time guards and other staging delays are ignored.

S The status of Alarms (except Fire and Safety chain) is ignored but all alerts and alarms are still broadcasted on the network.

Field Service Test can be turned ON/OFF at the unit display or from the network. Once turned ON, other entries may be made with the display or through the network. To turn Field Service Test on, change the value of Test Mode to ON, to turn Field Service Test off, change the value of Test Mode to OFF.

NOTE: Service Test mode is password protected when accessing from the display. Depending on the unit model, factory-installed options, and field-installed accessories, some of the Field Service Test functions may not apply.

The independent outputs (IndpOutputs) submenu is used to change output status for the supply fan, economizer, and Power Exhaust. These independent outputs can operate simultaneously with other Field Service Test modes. All outputs return to normal operation when Field Service Test is turned off.

The Cooling submenu is used to change output status for the individual compressors and the dehumidification relay. Compressor starts are not staggered. The fans and heating service test outputs are reset to OFF for the cooling service test. Indoor fans and outdoor fans are controlled

68

Image 68
Contents Table of Contents Safety ConsiderationsUnit Arrangement and Access Routine MaintenanceGeneral What to do if you smell gasSeasonal Maintenance Supply FAN Blower Section Supply Fan Belt-DriveCondenser Coil Condenser Coil Maintenance and Cleaning RecommendationCooling Periodic Clean Water Rinse Routine Cleaning of Coil SurfacesRemove Surface Loaded Fibers One-Row CoilRefrigerant System Pressure Access Ports Cleaning the Evaporator CoilEvaporator Coil Evaporator Coil Metering DevicesTo Use Cooling Charging Charts Puronr R-410A RefrigerantRefrigerant Charge No ChargeCooling Charging Charts Size Designation Nominal Tons ReferenceCooling Charging Charts C08229 C08437 C08438 C08439 Cooling Service Analysis Problem Cause RemedyCondenser-Fan Adjustment Troubleshooting Cooling SystemConvenience Outlets CompressorSmoke Detectors SystemController Unit Connect Primary TransformerSensor Smoke Detector LocationsCompleting Installation of Return Air Smoke Sensor Fiop Smoke Detector Wiring and ResponseSensor Alarm Test Sensor Alarm Test ProcedureController Alarm Test Sensor and Controller TestsController Alarm Test Procedure Dirty Controller Test ProcedureDirty Sensor Test Procedure To Configure the Dirty Sensor Test OperationDetector Cleaning Troubleshooting Protective Devices GAS Heating SystemCompressor Protection Relief DeviceFuel Types and Pressures Natural Gas Supply Line Pressure RangesNatural Gas Manifold Pressure Ranges Liquid Propane Supply Line Pressure RangesFlue Gas Passageways Combustion-Air BlowerCleaning and Adjustment Check Unit Operation and Make Necessary Adjust- mentsBurners and Igniters Main BurnersLimit Switch Burner IgnitionLED Indication Error Code Description Orifice ReplacementLED Error Code Description Red LED-Status IGC Connections Orifice SizesLP Orifice Altitude Compensation* A04-A07Cont. Altitude Compensation* A08-A12 Altitude Compensation* A04-A06 Low NOx Units Troubleshooting Heating SystemMinimum heating entering air temperature Heating Service Analysis Problem Cause RemedyIGC Board LED Alarm Codes IGCPremierlinkt Control PremierLink ControllerPremierLink Wiring Schematic 55 Space Temperature Sensor Wiring Space Sensor Mode PremierLink Sensor UsageThermostat Mode 56 Internal ConnectionsLctb Indoor CO2 Sensor 33ZCSENCO2 Connections PremierLink Filter Switch Connection Color Code Recommendations RTU-MP Control SystemRecommended Cables RTU-MP Multi-Protocol Control Board RTU-MP System Control Wiring Diagram RTU-MP Controller Inputs and Outputs OutputsSpace Temperature SPT Sensors RTU-MP T-55 Sensor ConnectionsIAQ Sensor SEN J4-2 COM J4-3 24 VAC Communication Wiring Protocols Connecting Discrete InputsPower Exhaust output RTU-MP Troubleshooting LEDs LEDs on the RTU-MP show the status of certain functionsTroubleshooting Alarms Alarms BACnet MS/TPRTU-MP Driver Basic Protocol Troubleshooting ModbusManufacture Date Code Name MeaningEconomizer Systems EconoMi$er IV Component LocationsEconoMi$er IV Wiring EconoMi$er EconoMi$er IV Input/Output LogicSupply Air Temperature SAT Sensor Outdoor Air Lockout SensorEconoMi$er IV Control Modes Outdoor Dry Bulb ChangeoverReturn Air Temperature or Enthalpy Sensor Mounting Location Outdoor Enthalpy ChangeoverMinimum Position Control Exhaust Setpoint AdjustmentIndoor Air Quality IAQ Sensor Input Damper Movement ThermostatsOccupancy Control Demand Control Ventilation DCVCO2 Sensor Configuration EconoMi$er IV Sensor UsageEconoMi$er IV Preparation Differential EnthalpyWiring Diagrams 48TC Typical Unit Wiring Diagram Power A06, 208/230-3-60 48TC Unit Wiring Diagram Control A06 PRE-START-UP START-UP, GeneralCooling Main BurnersHeating Ventilation Continuous FanField Service Test START-UP, Premierlink ControlsSTART-UP, RTU-MP Control Perform System Check-OutConfiguration Inputs InputSpace Sensor Type Input 1 FunctionOperating Sequences Base Unit Controls Cooling, Units Without EconomizerHeating, Units Without Economizer Cooling, Unit With EconoMi$erHeating With EconoMi$er PremierLink Control48TC Available Cooling Stages OAT ≤ SPT 48TC 48TC Loadshed Command Gas and Electric Heat Units RTU-MP Sequence of OperationLinkage Modes SchedulingAlways Occupied Default Occupancy Local ScheduleBACnet Schedule BAS On/OffIndoor Air Quality Power ExhaustEconomizer Torque Values Fastener Torque ValuesDemand Limit Appendix I. Model Number Significance Model Number NomenclatureSerial Number Format Position NumberAppendix II. Physical Data Physical Data Cooling TonsPhysical Data Cooling 48TC*A08 48TC*A09 48TC*A12Physical Data Heating LOW Appendix III. FAN Performance General Fan Performance NotesCFM RPM BHP Ton Horizontal SupplyTon Vertical Supply Medium Static Option High Static Option 48TC**05 Phase Ton Horizontal Supply 48TC**0548TC**05 Phase Ton Vertical Supply 14931506 148648TC**06 148248TC**06 Phase Ton Horizontal Supply 48TC**06 Phase Ton Vertical SupplyPhase Ton Horizontal Supply 48TC**071107 11241103 1143 1122 1162497 10991116 1093 1133579 12631247 1273Pulley Adjustment Unit MOTOR/DRIVE Motor Pulley Turns Open ComboAppendix IV. Electrical Data IFMRange RLA LRA TypeAppendix IV. Electrical Data FLAIFM Range EFF atRLA LRA FullCombustion Power NOM IFM No P.EFAN Motor Exhaust Type DISC. SizeUnbalanced 3-Phase Supply Voltage NOMAppendix V. Wiring Diagram List Wiring DiagramsAppendix VI. Motormaster Sensor Locations 48TC*A04 Outdoor Circuiting48TC*A09/12 Outdoor Circuiting Catalog No 48TC---2SMUnit START-UP Checklist Preliminary Information

48TCA04---A12 specifications

The Carrier 48TCA04---A12 is a high-efficiency rooftop air conditioning unit designed for commercial and industrial applications. Known for its reliability and performance, this model features advanced technologies that cater to diverse climate control needs.

One of the standout features of the Carrier 48TCA04---A12 is its excellent energy efficiency, which adheres to the stringent standards set by the U.S. Environmental Protection Agency. The unit utilizes a highly efficient scroll compressor combined with state-of-the-art heat exchanger technology, allowing it to operate with minimal energy consumption while providing powerful cooling capabilities.

The unit comes equipped with a robust and durable design, built to withstand various environmental conditions. Its weather-resistant cabinet is constructed from high-quality materials, ensuring long-lasting performance even in harsh climates. Additionally, the unit features a galvanized steel structure with a powder-coated finish, further enhancing its resistance to corrosion and wear.

In terms of technologies, the Carrier 48TCA04---A12 incorporates advanced controls that promote optimal performance. The unit supports Carrier's smart connectivity options, facilitating remote monitoring and adjustments via smart devices. This feature ensures convenient energy management and allows maintenance teams to access performance data, leading to proactive service interventions.

Another important characteristic of this unit is its quiet operation. The design includes sound-reducing insulation and a well-engineered airflow system, minimizing noise levels to create a more comfortable indoor environment. This is particularly important for commercial spaces such as offices and retail environments, where a tranquil atmosphere is critical for customer satisfaction and productivity.

The Carrier 48TCA04---A12 also offers diverse application flexibility, making it suitable for various locations, from small retail stores to large warehouses. With several tonnage options available, users can select a model that perfectly aligns with their specific cooling needs. Additionally, the unit can be easily integrated with existing HVAC systems, providing a seamless solution for upgrading or retrofitting older installations.

To sum up, the Carrier 48TCA04---A12 rooftop air conditioning unit stands out due to its exceptional energy efficiency, durable construction, advanced technology, and quiet operation, making it a reliable choice for commercial and industrial cooling solutions. Its flexibility and smart technology integrations ensure that it meets a wide range of climate control requirements effectively.