Liebert XDP160RM Calculating Refrigerant Charge-Example, Calculating refrigerant charge-example

Page 30

Piping

Table 9 R-134a refrigerant charge for Flex Pipe connector lines to and from any model Liebert XDO/Liebert XDH/Liebert XDV/Liebert XDCF/Liebert XDR

Refrigerant Charge

lb. (kg)

Metal Flex Pipe Connector Length

Supply Line Diameter 1/2"

0.3lb. (0.14) 4 ft. Flex Pipe Liebert XDH/Liebert XDO/Liebert XDV/Liebert XDCF/Liebert XDR supply

0.5lb. (0.23) 6 ft. Flex Pipe Liebert XDH/Liebert XDO/Liebert XDV/Liebert XDCF/Liebert XDR supply

0.7lb. (0.32) 8 ft. Flex Pipe Liebert XDH/Liebert XDO/Liebert XDV/Liebert XDCF/Liebert XDR supply

0.8lb. (0.36) 10 ft. Flex Pipe Liebert XDH/Liebert XDO/Liebert XDV/Liebert XDCF supply/Liebert XDR

Return Line Diameter 5/8"

0.01lb. (0.01) 4 ft. Flex Pipe existing Liebert XDV systems

0.02lb. (0.01) 6 ft. Flex Pipe existing Liebert XDV systems

0.03lb. (0.01) 8 ft. Flex Pipe existing Liebert XDV systems

0.03lb. (0.01) 10 ft. Flex Pipe existing Liebert XDV systems

Return Line Diameter 1"

0.13lb. (0.06) 4 ft. Flex Pipe Liebert XDH/Liebert XDO/Liebert XDV/Liebert XDCF/Liebert XDR supply

0.2lb. (0.09) 6 ft. Flex Pipe Liebert XDH/Liebert XDO/Liebert XDV/Liebert XDCF/Liebert XDR supply

0.27lb. (0.12) 8 ft. Flex Pipe Liebert XDH/Liebert XDO/Liebert XDV/Liebert XDCF/Liebert XDR supply

0.33lb. (0.15) 10 ft. Flex Pipe Liebert XDH/Liebert XDO/Liebert XDV/Liebert XDCF/Liebert XDR supply

3.6.1Calculating Refrigerant Charge—Example

Using Tables 6, 7, 8 and 9, calculate the refrigerant charge of the individual sections of your Liebert XD system. Add the calculated charge amounts to determine the amount of R-134a refrigerant required for one system combining a Liebert XDP with Liebert XD cooling modules (Liebert XDCF, Liebert XDH, Liebert XDO and Liebert XDV). The example below combines one Liebert XDP with 20 Liebert XDV8 cooling modules.

Table 10 Calculating refrigerant charge—example

 

Number of Units

Pounds Per

 

Components

or Piping Length, feet

Component

Total, lb.

 

 

 

 

Liebert XDP

1

157

157

 

 

 

 

Liebert XDV8 Cooling Modules

20

2.32

46.4

 

 

 

 

Supply Main, 1-1/8"

100

0.45

45

 

 

 

 

Return Main, 2-1/8"

100

0.28

28

 

 

 

 

Liebert XDV 1/2" supply Liebert XD Flex Pipes

20

0.8

16

 

 

 

 

Liebert XDV 5/8" return Liebert XD Flex Pipes

20

0.03

0.6

 

 

 

 

 

 

Total

293

Table 11 Worksheet to calculate refrigerant charge

Components

Number of Units or Piping Length

Pounds Per Component

Total

Total

24

Image 30
Contents Liebert XDP with Liebert iCOM Control Page Table of Contents Alarm Descriptions and Solutions SpecificationsStart the Liebert XDP with Liebert Icom Figures Tables Important Safety Instructions Example XDP160RA Pumping Unit Redundancy Place holder Revision Level Liebert= 460V-3ph-60Hz Place holder Product/System Description General Product InformationEquipment Inspection Minimum LoadEquipment Handling Handling the Liebert XDP While it is on Skid and PackagedRemoving the Unit from the Skid Using a Forklift Unpacking the Liebert XDPRemoving the Unit from the Skid using Rigging Use a forklift to remove the Liebert XDP from the skidMoving the Liebert XDP Using Piano Jacks Spreader Bars BracketRemoving the Unit from the Piano Jacks Securing the Liebert XDP to piano jacksLiebert XDP dimensions Mechanical ConsiderationsPositioning the Liebert XDP Electrical Considerations Unit piping outlet connection sizes, inches, OD CuModel Pipe Connection Point 50/60 Hz Connecting High-Voltage Cables Front view of Liebert XDP and electrical enclosureHigh voltage connections-60Hz Extra Low Voltage ELV Connections High voltage connections-50HzConnecting the remote temperature/humidity sensors DIP Switch and Jumper Settings for Remote Sensors DIP switch and jumper settingsField Connections-Optional for All Units Liebert XDP extra low voltage field connections pointsRemote Sensor Installation-Proper Placement Suggested remote sensor placementRecommended Pipe Size European Union Fluorinated Greenhouse Gas RequirementsConnection Sizes Supply, return pipe sizes for refrigerant loopLiebert XDP Interconnection with Liebert XD Cooling Modules Piping Installation MethodsPiping Installation-R-134a Pumped Circuit Liebert XDPBypass flow controllers for a Liebert XDP-based system Piping MainsBypass Flow Controller Required Number of OpenPiping Details-Shutoff/Isolation Valves Bypass flow controller arrangementEvacuation and Leak Check-R-134a Pumped Circuit InsulationFloor Supply Return Liebert Filling the Pumped Circuit-R-134a System refrigerant charge for the supply and return mainsCalculating Refrigerant Charge-Example Calculating refrigerant charge-exampleWorksheet to calculate refrigerant charge Checklist for Proper Installation Liebert iCOM Components and Functions Escape Key Down Arrow KeyDisplay Lamp Indicators Keyboard icons and functionsIcon Key Name Function Accessing Menus and Settings Viewing Data Navigating Through the Liebert iCOM DisplayUnit Sensor a Sensor B Pump Operation Roo m Data Room Data Cooling Module Overview ACK High Chilled Water TempEntering the Password Entering the passwordHighlight the setting to be changed by pressing Enter Changing Liebert iCOM’s Display SettingsChanging Operational Settings English USGraphical Data Record Liebert iCOM User Menu Icons and LegendLiebert XDP User Menu screen Liebert iCOM User Menu Screens Spare PartsEvent Log SET Alarms page 1 Sensor Data screen, page 1 Sensor Data screen, page 2 U401 U402 Online XDV8SKXDH32SK XDO20SK 20 KWService Mode Liebert iCOM Service Menu Icons and LegendSetpoints Maintenance Diagnostics Set Alarms SettingsLiebert iCOM Service Menu Screens Liebert XDP Service Menu screenLiebert iCOM Control-Firmware Version XP1.00.010.STD Maintenance-Basic Settings screen, page 1 Maintenance-Pump 1 Settings screen, page 2 Maintenance-Pump 2 Settings screen, page 3 Diagnostics/Service Mode screen, page 1 Manual Mode Control Type-Not currently used Diagnostics/Service Mode screen, page 5 Set Alarms screen, page 1 Set Alarms screen, page 2 LOW Temp Sensor a Enable ALM Delay EN-DIS TypeHigh Temp Sensor a Enable ALM High Temp Sensor B Enable ALMSupply Refrigerant Sensor Enable ALM High Refrigerant Temp Enable ALMLOW Refrigerant Temp Enable ALM Loss of Flow Pump Enable ALMCustomer Input Enable ALM Condensation Detected Enable ALMFAN Failure Enable ALM Smoke Detected Enable ALMS601 S612 S801 MAC GBPSystem/Network Setup screen-Unit, page 1 UnitS834 S835 S401 Local Module Shutdown Enable ALM Node ID Delay EN-DIS TypeCondensation Detected Enable Sensor Failure Enable ALMNode ID Delay EN-DIS Type Checklist for Liebert XDP Startup Liebert XDP pump light indicator-208V and 400V unitsIndicator Lights Description Green Red Starting the Liebert XDP with Liebert iCOM Controller System R-134a liquid level at 160kW loadAlarm Descriptions Alarm Descriptions and Solutions Unit Is Off By High CW Temp System Shutdown CausesUnit Is Off By Refrig Sens Fail Unit Is Off By Pump Short CycleTroubleshooting the Liebert XDP Symptom Possible Cause Check or RemedySee Clogged Filter Dryer and/or Impeller symptom Maintenance Fluorinated Greenhouse Gas RequirementsLiebert XDP160 specifications Liebert Corporation Dearborn Drive Box Columbus, OH 2006/42/EC 2004/108/EC 2006/95/EC 97/23/ECTwor k Ne tIs t Care

XDP160RA, XDP160RC, XDP160RM specifications

The Liebert XDP series is an innovative line of uninterruptible power supplies (UPS) designed to safeguard critical IT equipment and ensure reliability in demanding environments. The XDP160RM, XDP160RC, and XDP160RA models are distinguished by their robust features and advanced technologies, making them ideal for data centers, server rooms, and telecommunications.

One of the standout features of the Liebert XDP series is its high power density. The XDP160RM, XDP160RC, and XDP160RA models provide 160 kVA of power in a compact design, occupying minimal floor space. This efficient design maximizes data center performance without compromising on reliability.

All three models utilize advanced digital signal processing (DSP) technology that enhances system performance and efficiency. The DSP technology ensures high efficiency rates, often exceeding 95% in online mode. This not only reduces energy costs but also minimizes heat output, contributing to a more sustainable operational environment.

The Liebert XDP series is equipped with multiple output configurations, allowing for versatile installation options. The modular architecture of the UPS systems allows for easy scalability to meet future power demands without the need for complete system replacement. This flexibility is crucial for businesses expecting growth or changes in IT infrastructure.

Another important aspect of the XDP160RM, XDP160RC, and XDP160RA is their advanced battery management systems, which optimize battery performance and longevity. The integrated smart battery charging technology prevents overcharging and extends battery life, ensuring that the UPS is always ready during power interruptions.

Additionally, the systems are designed with user-friendly interfaces that facilitate ease of monitoring and management. With real-time data on power usage, battery status, and overall system health, IT administrators can quickly address any issues that arise. The monitoring capabilities extend to remote access, enabling users to manage the UPS systems from virtually anywhere.

The Liebert XDP series also incorporates enhanced safety features, including fault detection and automated alerts, which further bolster reliability. With a strong commitment to maintaining uptime and safeguarding critical operations, the XDP models are a wise investment for any organization reliant on continuous power availability.

In conclusion, the Liebert XDP160RM, XDP160RC, and XDP160RA UPS systems are engineered to deliver exceptional power protection through high efficiency, advanced technologies, and user-friendly management features. These models are positioned to meet the rigorous demands of modern IT environments, ensuring that businesses can maintain operations without interruption.