Liebert XDP160RA Node ID Delay EN-DIS Type, Condensation Detected Enable, FAN Control Mode OFF

Page 68

Liebert iCOM Control—Firmware Version XP1.00.010.STD

Figure 68 Options Setup screen, page 2 of 2

 

 

 

 

 

 

 

 

 

 

UNIT 01

 

 

S412

PASSWORD (Actual Level 0)

????

 

 

S413

Valve Start Open

30%

 

 

S414

Valve Start TD

90sec

 

 

S415

3P Actuator Runtime

70sec

 

 

S416

3P Actuator Direction

Direct

 

 

S417

Unit Off Valve % Open

30%

 

 

S418

 

 

 

 

 

S419

 

 

 

 

 

S420

 

 

 

 

 

S421

 

 

 

 

 

S422

 

 

 

 

 

 

 

 

 

for next/previous unit

to select parameter

 

 

then

to change parameter

to confirm

 

 

 

 

 

 

 

 

 

 

 

 

 

Valve Start Open—Sets position of the valve when the unit starts.

Valve Start TD—Sets a time interval for the unit to complete startup and enter into normal operation.

3P Actuator Runtime—If Valve Control is selected for “Time” then this parameter sets the travel time of the valve to determine the full open and closed position of the valve. This parameter is set at the factory, based on the valve manufacturer’s specifications.

3P Actuator Direction—Sets if the valve is a “Direct” or “Reverse” acting valve. Unit Off Valve % Open—Sets the valve position when the unit is Off.

Figure 69 Module Setup screen, page 1 of 20

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

S901

PASSWORD (Actual Level 0)

 

 

 

????

 

 

S902

NODE ID 81

DELAY

EN-DIS

 

TYPE

 

 

S903

CONDENSATION DETECTED

15

ENABLE

 

 

 

 

S904

LOCAL MODULE SHUTDOWN

15

ENABLE ALM

 

 

S905

SENSOR FAILURE

30

ENABLE

ALM

 

 

S906

FAN FAILURE

30

ENABLE

ALM

 

 

S907

FAN CONTROL MODE

OFF

 

 

 

 

 

S908

DISABLE LOCAL BUTTON

NO

 

 

 

 

 

S909

FLASH LED AT MODULE

NO

 

 

 

 

 

S910

SET MODULE LABEL

A Z81

 

 

 

 

 

S911

SUPPLY AIR TEMP LIMITS

High 80

Low

50

°F

 

 

S912

RETURN AIR TEMP LIMITS

High 120 Low

60

°F

 

 

S913

FIRMWARE VERSION

 

XXX.XX.XXX

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

62

Image 68
Contents Liebert XDP with Liebert iCOM Control Page Table of Contents Start the Liebert XDP with Liebert Icom Alarm Descriptions and SolutionsSpecifications Figures Tables Important Safety Instructions = 460V-3ph-60Hz Place holder Example XDP160RAPumping Unit Redundancy Place holder Revision Level Liebert General Product Information Equipment InspectionProduct/System Description Minimum LoadEquipment Handling Handling the Liebert XDP While it is on Skid and PackagedRemoving the Unit from the Skid Using a Forklift Unpacking the Liebert XDPRemoving the Unit from the Skid using Rigging Use a forklift to remove the Liebert XDP from the skidMoving the Liebert XDP Using Piano Jacks Spreader Bars BracketRemoving the Unit from the Piano Jacks Securing the Liebert XDP to piano jacksPositioning the Liebert XDP Liebert XDP dimensionsMechanical Considerations Model Pipe Connection Point 50/60 Hz Electrical ConsiderationsUnit piping outlet connection sizes, inches, OD Cu Connecting High-Voltage Cables Front view of Liebert XDP and electrical enclosureHigh voltage connections-60Hz Extra Low Voltage ELV Connections High voltage connections-50HzConnecting the remote temperature/humidity sensors DIP Switch and Jumper Settings for Remote Sensors DIP switch and jumper settingsField Connections-Optional for All Units Liebert XDP extra low voltage field connections pointsRemote Sensor Installation-Proper Placement Suggested remote sensor placementEuropean Union Fluorinated Greenhouse Gas Requirements Connection SizesRecommended Pipe Size Supply, return pipe sizes for refrigerant loopPiping Installation Methods Piping Installation-R-134a Pumped CircuitLiebert XDP Interconnection with Liebert XD Cooling Modules Liebert XDPPiping Mains Bypass Flow ControllerBypass flow controllers for a Liebert XDP-based system Required Number of OpenPiping Details-Shutoff/Isolation Valves Bypass flow controller arrangementFloor Supply Return Liebert Evacuation and Leak Check-R-134a Pumped CircuitInsulation Filling the Pumped Circuit-R-134a System refrigerant charge for the supply and return mainsWorksheet to calculate refrigerant charge Calculating Refrigerant Charge-ExampleCalculating refrigerant charge-example Checklist for Proper Installation Liebert iCOM Components and Functions Escape Key Down Arrow KeyIcon Key Name Function Display Lamp IndicatorsKeyboard icons and functions Unit Sensor a Sensor B Pump Operation Roo m Data Room Data Accessing Menus and Settings Viewing DataNavigating Through the Liebert iCOM Display Cooling Module Overview ACK High Chilled Water TempEntering the Password Entering the passwordChanging Liebert iCOM’s Display Settings Changing Operational SettingsHighlight the setting to be changed by pressing Enter English USGraphical Data Record Liebert iCOM User Menu Icons and LegendLiebert XDP User Menu screen Event Log Liebert iCOM User Menu ScreensSpare Parts SET Alarms page 1 Sensor Data screen, page 1 Sensor Data screen, page 2 U401 U402 Online XDV8SKXDH32SK XDO20SK 20 KWLiebert iCOM Service Menu Icons and Legend Setpoints Maintenance Diagnostics Set AlarmsService Mode SettingsLiebert iCOM Service Menu Screens Liebert XDP Service Menu screenLiebert iCOM Control-Firmware Version XP1.00.010.STD Maintenance-Basic Settings screen, page 1 Maintenance-Pump 1 Settings screen, page 2 Maintenance-Pump 2 Settings screen, page 3 Diagnostics/Service Mode screen, page 1 Manual Mode Control Type-Not currently used Diagnostics/Service Mode screen, page 5 Set Alarms screen, page 1 Set Alarms screen, page 2 Delay EN-DIS Type High Temp Sensor a Enable ALMLOW Temp Sensor a Enable ALM High Temp Sensor B Enable ALMHigh Refrigerant Temp Enable ALM LOW Refrigerant Temp Enable ALMSupply Refrigerant Sensor Enable ALM Loss of Flow Pump Enable ALMCondensation Detected Enable ALM FAN Failure Enable ALMCustomer Input Enable ALM Smoke Detected Enable ALMS601 S612 S801 MAC GBPSystem/Network Setup screen-Unit, page 1 UnitS834 S835 S401 Node ID Delay EN-DIS Type Condensation Detected EnableLocal Module Shutdown Enable ALM Sensor Failure Enable ALMNode ID Delay EN-DIS Type Indicator Lights Description Green Red Checklist for Liebert XDP StartupLiebert XDP pump light indicator-208V and 400V units Starting the Liebert XDP with Liebert iCOM Controller System R-134a liquid level at 160kW loadAlarm Descriptions Alarm Descriptions and Solutions System Shutdown Causes Unit Is Off By Refrig Sens FailUnit Is Off By High CW Temp Unit Is Off By Pump Short CycleTroubleshooting the Liebert XDP Symptom Possible Cause Check or RemedySee Clogged Filter Dryer and/or Impeller symptom Maintenance Fluorinated Greenhouse Gas RequirementsLiebert XDP160 specifications Liebert Corporation Dearborn Drive Box Columbus, OH 2006/42/EC 2004/108/EC 2006/95/EC 97/23/ECNe t Is tTwor k Care

XDP160RA, XDP160RC, XDP160RM specifications

The Liebert XDP series is an innovative line of uninterruptible power supplies (UPS) designed to safeguard critical IT equipment and ensure reliability in demanding environments. The XDP160RM, XDP160RC, and XDP160RA models are distinguished by their robust features and advanced technologies, making them ideal for data centers, server rooms, and telecommunications.

One of the standout features of the Liebert XDP series is its high power density. The XDP160RM, XDP160RC, and XDP160RA models provide 160 kVA of power in a compact design, occupying minimal floor space. This efficient design maximizes data center performance without compromising on reliability.

All three models utilize advanced digital signal processing (DSP) technology that enhances system performance and efficiency. The DSP technology ensures high efficiency rates, often exceeding 95% in online mode. This not only reduces energy costs but also minimizes heat output, contributing to a more sustainable operational environment.

The Liebert XDP series is equipped with multiple output configurations, allowing for versatile installation options. The modular architecture of the UPS systems allows for easy scalability to meet future power demands without the need for complete system replacement. This flexibility is crucial for businesses expecting growth or changes in IT infrastructure.

Another important aspect of the XDP160RM, XDP160RC, and XDP160RA is their advanced battery management systems, which optimize battery performance and longevity. The integrated smart battery charging technology prevents overcharging and extends battery life, ensuring that the UPS is always ready during power interruptions.

Additionally, the systems are designed with user-friendly interfaces that facilitate ease of monitoring and management. With real-time data on power usage, battery status, and overall system health, IT administrators can quickly address any issues that arise. The monitoring capabilities extend to remote access, enabling users to manage the UPS systems from virtually anywhere.

The Liebert XDP series also incorporates enhanced safety features, including fault detection and automated alerts, which further bolster reliability. With a strong commitment to maintaining uptime and safeguarding critical operations, the XDP models are a wise investment for any organization reliant on continuous power availability.

In conclusion, the Liebert XDP160RM, XDP160RC, and XDP160RA UPS systems are engineered to deliver exceptional power protection through high efficiency, advanced technologies, and user-friendly management features. These models are positioned to meet the rigorous demands of modern IT environments, ensuring that businesses can maintain operations without interruption.