Notice

Notice

Copyright

1998 Agilent Technologies 1998, 2000. All rights reserved.

No part of this manual may be reproduced in any form or by any means (including electronic storage and retrieval or translation into a foreign language) without prior agreement and written consent from Agilent Technologies Inc. as governed by United States and international copyright laws.

Notice

The material contained in this document is subject to change without notice. Agilent Technologies makes no warranty of any kind with regard to this material, including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose. Agilent Technologies shall not be liable for errors contained herein or for incidental or consequential damages in connection with the furnishing, performance, or use of this material.

Warranty

This Agilent Technologies product has a warranty against defects in material and workmanship for a period of three years from date of shipment. During the warranty period, Agilent Technologies will, at its option, either repair or replace products that prove to be defective. For warranty service or repair, this product must be returned to a service facility designated by Agilent Technologies. The Buyer shall pay Agilent Technologies round-trip travel expenses. For products returned to Agilent Technologies for warranty service, the Buyer shall prepay shipping charges to Agilent Technologies and Agilent Technologies shall pay shipping charges to return the product to the Buyer. However, the Buyer shall pay all shipping charges, duties and taxes for products returned to Agilent Technologies from another country.

4

Page 4
Image 4
Agilent Technologies 81101A manual Copyright

81101A specifications

Agilent Technologies 81101A is a high-performance pulse generator designed to meet the rigorous demands of today's electronic testing environments. This versatile instrument is crucial for engineers and researchers who require precise timing characteristics and reliability for their testing applications.

One of the standout features of the 81101A is its ability to generate fast, precise pulses with rise and fall times of less than 1 ns. This capability makes it ideal for testing high-speed digital circuits, as it can accurately simulate signal behavior in real-world conditions. The generator operates across a frequency range of DC to 1 GHz, allowing it to cater to a variety of applications, including telecommunications, semiconductor testing, and signal integrity investigations.

The 81101A is equipped with advanced modulation capabilities, including amplitude modulation, frequency modulation, and pulse-width modulation. These features enable users to create complex waveforms that can mimic real-world signals. Additionally, the generator supports dual-channel operation, allowing simultaneous pulse generation on two outputs, which is particularly useful for testing differential signaling schemes.

Another significant characteristic of the 81101A is its comprehensive range of output formats. It supports single-ended and differential outputs, which can be essential for measuring the performance of various devices under different operating conditions. The instrument also offers a wide range of output amplitudes, from a few millivolts to several volts, making it flexible enough to cater to a variety of testing requirements.

The user interface of the 81101A is intuitive, featuring a large graphical display that simplifies waveform configuration and real-time monitoring. This interface allows engineers to easily set parameters and visualize pulse characteristics, reducing the time required for setup and configuration.

In terms of connectivity, the 81101A is designed to integrate seamlessly into existing test environments. It includes standard interfaces such as GPIB, USB, and LAN, facilitating automated testing procedures and communication with other laboratory equipment.

Overall, the Agilent Technologies 81101A pulse generator is an essential tool for engineers seeking precise and versatile signal generation capabilities. With its high-frequency performance, advanced modulation options, and user-friendly features, it remains a valuable asset in electronic testing and research applications.