Bryant 580J*04--12 Damper Movement, Thermostats, Occupancy Control, CO2 Sensor Configuration

Models: 580J*04--12

1 73
Download 73 pages 806 b
Page 40
Image 40
Damper Movement

580J

5. Carefully adjust the minimum position potentiometer until the measured mixed air temperature matches the calculated value.

6.Reconnect the supply air sensor to terminals T and T1.

Remote control of the EconoMi$er IV damper is desirable when requiring additional temporary ventilation. If a field-supplied remote potentiometer (Honeywell part number S963B1128) is wired to the EconoMi$er IV controller, the minimum position of the damper can be controlled from a remote location.

To control the minimum damper position remotely, remove the factory-installed jumper on the P and P1 terminals on the EconoMi$er IV controller. Wire the field-supplied potentiometer to the P and P1 terminals on the EconoMi$er IV controller. (See Fig. 41.)

Damper Movement

Damper movement from full open to full closed (or vice versa) takes 2-1/2 minutes.

Thermostats

The EconoMi$er IV control works with conventional thermostats that have a Y1 (cool stage 1), Y2 (cool stage 2), W1 (heat stage 1), W2 (heat stage 2), and G (fan). The EconoMi$er IV control does not support space temperature sensors. Connections are made at the thermostat terminal connection board located in the main control box.

Occupancy Control

The factory default configuration for the EconoMi$er IV control is occupied mode. Occupied status is provided by the black jumper from terminal TR to terminal N. When unoccupied mode is desired, install a field-supplied timeclock function in place of the jumper between TR and N. (See Fig. 41.) When the timeclock contacts are closed, the EconoMi$er IV control will be in occupied mode. When the timeclock contacts are open (removing the 24-v signal from terminal N), the EconoMi$er IV will be in unoccupied mode.

Demand Control Ventilation (DCV)

When using the EconoMi$er IV for demand controlled ventilation, there are some equipment selection criteria which should be considered. When selecting the heat capacity and cool capacity of the equipment, the maximum ventilation rate must be evaluated for design conditions. The maximum damper position must be calculated to provide the desired fresh air.

Typically the maximum ventilation rate will be about 5 to 10% more than the typical cfm required per person, using normal outside air design criteria.

A proportional anticipatory strategy should be taken with the following conditions: a zone with a large area, varied occupancy, and equipment that cannot exceed the required ventilation rate at design conditions. Exceeding the required ventilation rate means the equipment can condition air at a maximum ventilation rate that is greater than the required ventilation rate for maximum occupancy. A proportional-anticipatory strategy will cause

the fresh air supplied to increase as the room CO2 level increases even though the CO2 setpoint has not been reached. By the time the CO2 level reaches the setpoint, the damper will be at maximum ventilation and should maintain the setpoint.

In order to have the CO2 sensor control the economizer damper in this manner, first determine the damper voltage output for minimum or base ventilation. Base ventilation is the ventilation required to remove contaminants during unoccupied periods. The following equation may be used to determine the percent of outside air entering the building for a given damper position. For best results there should be at least a 10 degree difference in outside and return-air temperatures.

(TO x 100OA ) + (TR x 100RA ) =TM

TO = Outdoor-Air Temperature

OA = Percent of Outdoor Air

TR = Return-Air Temperature

RA = Percent of Return Air

TM = Mixed-Air Temperature

Once base ventilation has been determined, set the minimum damper position potentiometer to the correct position.

The same equation can be used to determine the occupied or maximum ventilation rate to the building. For example, an output of 3.6 volts to the actuator provides a base ventilation rate of 5% and an output of 6.7 volts provides the maximum ventilation rate of 20% (or base plus 15 cfm per person). Use Fig. 51 to determine the maximum setting of the CO2 sensor. For example, an 1100 ppm setpoint relates to a 15 cfm per person design. Use the 1100 ppm curve on Fig. 51 to find the point when the CO2 sensor output will be 6.7 volts. Line up the point on the graph with the left side of the chart to determine that the range configuration for the CO2 sensor should be 1800 ppm. The EconoMi$er IV controller will output the 6.7 volts from the CO2 sensor to the actuator when the CO2 concentration in the space is at 1100 ppm. The DCV setpoint may be left at 2 volts since the CO2 sensor voltage will be ignored by the EconoMi$er IV controller until it rises above the 3.6 volt setting of the minimum position potentiometer.

Once the fully occupied damper position has been determined, set the maximum damper demand control ventilation potentiometer to this position. Do not set to the maximum position as this can result in over-ventilation to the space and potential high humidity levels.

CO2 Sensor Configuration

The CO2 sensor has preset standard voltage settings that can be selected anytime after the sensor is powered up. (See Table 17.)

Use setting 1 or 2 for Bryant equipment. (See Table 17.)

1.Press Clear and Mode buttons. Hold at least 5 seconds until the sensor enters the Edit mode.

2.Press Mode twice. The STDSET Menu will appear.

40

Page 40
Image 40
Bryant 580J*04--12 appendix Damper Movement, Thermostats, Occupancy Control, Demand Control Ventilation DCV