Chapter 22 Configuring Connection Settings

Configuring Connection Settings

Send reset to TCP endpoints before timeout—Specifies that the ASA should send a TCP reset message to the endpoints of the connection before freeing the connection slot.

Embryonic Connection Timeout—Specifies the idle time until an embryonic (half-open) connection slot is freed. Enter 0:0:0 to disable timeout for the connection. The default is 30 seconds.

Half Closed Connection Timeout—Sets the idle timeout period until a half-closed connection is closed, between 0:5:0 (for 9.1(1) and earlier) or 0:0:30 (for 9.1(2) and later) and 1193:0:0. The default is 0:10:0. Half-closed connections are not affected by DCD. Also, the ASA does not send a reset when taking down half-closed connections.

Step 5 To disable randomized sequence numbers, uncheck Randomize Sequence Number.

TCP initial sequence number randomization can be disabled if another in-line firewall is also randomizing the initial sequence numbers, because there is no need for both firewalls to be performing this action. However, leaving ISN randomization enabled on both firewalls does not affect the traffic.

Each TCP connection has two ISNs: one generated by the client and one generated by the server. The security appliance randomizes the ISN of the TCP SYN passing in the outbound direction. If the connection is between two interfaces with the same security level, then the ISN will be randomized in the SYN in both directions.

Randomizing the ISN of the protected host prevents an attacker from predecting the next ISN for a new connection and potentially hijacking the new session.

Step 6 To configure TCP normalization, check Use TCP Map. Choose an existing TCP map from the drop-down list (if available), or add a new one by clicking New.

The Add TCP Map dialog box appears. See the “Customizing the TCP Normalizer with a TCP Map” section on page 22-6.

Step 7 Click OK.

Step 8 To set the time to live, check Decrement time to live for a connection.

Step 9 To enable TCP state bypass, in the Advanced Options area, check TCP State Bypass. Step 10 Click OK or Finish.

Configuring Global Timeouts

The Configuration > Firewall > Advanced > Global Timeouts pane lets you set the timeout durations for use with the ASA. All durations are displayed in the format hh:mm:ss. It sets the idle time for the connection and translation slots of various protocols. If the slot has not been used for the idle time specified, the resource is returned to the free pool. TCP connection slots are freed approximately 60 seconds after a normal connection close sequence.

Fields

In all cases, except for Authentication absolute and Authentication inactivity, unchecking the check boxes means there is no timeout value. For those two cases, clearing the check box means to reauthenticate on every new connection.

Connection—Modifies the idle time until a connection slot is freed. Enter 0:0:0 to disable timeout for the connection. This duration must be at least 5 minutes. The default is 1 hour.

Half-closed—Modifies the idle time until a TCP half-closed connection closes. The minimum is 5 minutes. The default is 10 minutes. Enter 0:0:0 to disable timeout for a half-closed connection.

Cisco ASA Series Firewall ASDM Configuration Guide

22-9

Page 537
Image 537
Cisco Systems ASA 5585-X, ASA 5505, ASA 5545-X, ASA 5555-X, ASA 5580, ASA Services Module Configuring Global Timeouts, 22-9

ASA Services Module, ASA 5555-X, ASA 5545-X, ASA 5585-X, ASA 5580 specifications

Cisco Systems has long been a leader in the field of network security, and its Adaptive Security Appliance (ASA) series is a testament to this expertise. Within the ASA lineup, models such as the ASA 5505, ASA 5580, ASA 5585-X, ASA 5545-X, and ASA 5555-X stand out for their unique features, capabilities, and technological advancements.

The Cisco ASA 5505 is designed for small businesses or branch offices. It provides essential security features such as firewall protection, flexible VPN capabilities, and intrusion prevention. The ASA 5505 supports a user-friendly interface, allowing for straightforward management. Its built-in threat detection and prevention tools provide a layered defense, and with scalability in mind, it can accommodate various expansion options as organizational needs grow.

Moving up the line, the ASA 5580 delivers greater throughput and advanced security features. This model is suited for medium to large enterprises that require robust protection against increasingly sophisticated threats. Its multi-core architecture allows it to manage high volumes of traffic seamlessly while maintaining excellent performance levels. The ASA 5580 also supports application-layer security and customizable access policies, making it highly adaptable to diverse security environments.

The ASA 5585-X further enhances Cisco's security offerings with advanced malware protection and extensive security intelligence capabilities. It incorporates next-generation firewall features, including context-aware security, and supports advanced threat detection technologies. This model is ideal for large enterprises or data centers that prioritize security while ensuring uninterrupted network performance and availability.

For enterprises requiring a balance of performance and security, the ASA 5545-X presents a compelling option. This model features scalable performance metrics, high availability, and integrated advanced threat protection. Coupled with advanced endpoint protection and detailed monitoring capabilities, the ASA 5545-X enables organizations to manage their security posture effectively.

Lastly, the ASA 5555-X blends cutting-edge technologies with strong security infrastructures. It boasts high throughput and the ability to execute deep packet inspections. Its sophisticated architecture supports threat intelligence feeds that provide real-time security updates, making it a powerful tool against modern threats.

Each of these Cisco ASA models brings specific advantages to varied environments. Their integrative capabilities enable businesses to enhance their security postures while benefiting from seamless scalability and management. As cybersecurity threats evolve, these advanced appliances play a vital role in protecting valuable digital assets.