Chapter 17 Configuring the Cisco Phone Proxy

Prerequisites for the Phone Proxy

The phone must be configured to use only the SCCP protocol because the SIP protocol does not support encryption on these IP phones.

If LSC provisioning is done via the phone proxy, you must add an ACL to allow the IP phones to register with the Cisco UCM on the nonsecure port 2000.

Cisco IP Communicator Prerequisites

To configure Cisco IP Communicator (CIPC) with the phone proxy, you must meet the following prerequisites:

Go to Configuration > Firewall > Unified Communications > Phone Proxy and select the “Enable CICP security mode authentication” check box under the Call Manager and Phone Settings area.

Create an ACL to allow CIPC to register with the Cisco UCM in nonsecure mode.

Configure null-sha1 as one of the SSL encryption ciphers.

Current versions of Cisco IP Communicator (CIPC) support authenticated mode and perform TLS signaling but not voice encryption.

Because CIPC requires an LSC to perform the TLS handshake, CIPC needs to register with the Cisco UCM in nonsecure mode using cleartext signaling. To allow the CIPC to register, create an ACL that allows the CIPC to connect to the Cisco UCM on the nonsecure SIP/SCCP signalling ports (5060/2000).

Note You can configure LSC provisioning for additional end-user authentication. See the Cisco Unified Communications Manager configuration guide for information.

CIPC uses a different cipher when doing the TLS handshake and requires the null-sha1 cipher and SSL encryption be configured. To add the null-shal cipher, use the show run all ssl command to see the output for the ssl encryption command and add null-shal to the end of the SSL encryption list.

Note When used with CIPC, the phone proxy does not support end-users resetting their device name in CIPC (Preferences > Network tab > Use this Device Name field) or Administrators resetting the device name in Cisco Unified CM Administration console (Device menu > Phone Configuration > Device Name field). To function with the phone proxy, the CIPC configuration file must be in the format: SEP<mac_address>.cnf.xml. If the device name does not follow this format (SEP<mac_address>), CIPC cannot retrieve its configuration file from Cisco UMC via the phone proxy and CIPC will not function.

Prerequisites for Rate Limiting TFTP Requests

In a remote access scenario, we recommend that you configure rate limiting of TFTP requests because any IP phone connecting through the Internet is allowed to send TFTP requests to the TFTP server.

To configure rate limiting of TFTP requests, configure the police command in the Modular Policy Framework. See the command reference for information about using the police command.

Policing is a way of ensuring that no traffic exceeds the maximum rate (in bits/second) that you configure, thus ensuring that no one traffic flow can take over the entire resource. When traffic exceeds the maximum rate, the ASA drops the excess traffic. Policing also sets the largest single burst of traffic allowed.

Cisco ASA Series Firewall ASDM Configuration Guide

17-10

Page 440
Image 440
Cisco Systems ASA 5555-X manual Cisco IP Communicator Prerequisites, Prerequisites for Rate Limiting Tftp Requests, 17-10

ASA Services Module, ASA 5555-X, ASA 5545-X, ASA 5585-X, ASA 5580 specifications

Cisco Systems has long been a leader in the field of network security, and its Adaptive Security Appliance (ASA) series is a testament to this expertise. Within the ASA lineup, models such as the ASA 5505, ASA 5580, ASA 5585-X, ASA 5545-X, and ASA 5555-X stand out for their unique features, capabilities, and technological advancements.

The Cisco ASA 5505 is designed for small businesses or branch offices. It provides essential security features such as firewall protection, flexible VPN capabilities, and intrusion prevention. The ASA 5505 supports a user-friendly interface, allowing for straightforward management. Its built-in threat detection and prevention tools provide a layered defense, and with scalability in mind, it can accommodate various expansion options as organizational needs grow.

Moving up the line, the ASA 5580 delivers greater throughput and advanced security features. This model is suited for medium to large enterprises that require robust protection against increasingly sophisticated threats. Its multi-core architecture allows it to manage high volumes of traffic seamlessly while maintaining excellent performance levels. The ASA 5580 also supports application-layer security and customizable access policies, making it highly adaptable to diverse security environments.

The ASA 5585-X further enhances Cisco's security offerings with advanced malware protection and extensive security intelligence capabilities. It incorporates next-generation firewall features, including context-aware security, and supports advanced threat detection technologies. This model is ideal for large enterprises or data centers that prioritize security while ensuring uninterrupted network performance and availability.

For enterprises requiring a balance of performance and security, the ASA 5545-X presents a compelling option. This model features scalable performance metrics, high availability, and integrated advanced threat protection. Coupled with advanced endpoint protection and detailed monitoring capabilities, the ASA 5545-X enables organizations to manage their security posture effectively.

Lastly, the ASA 5555-X blends cutting-edge technologies with strong security infrastructures. It boasts high throughput and the ability to execute deep packet inspections. Its sophisticated architecture supports threat intelligence feeds that provide real-time security updates, making it a powerful tool against modern threats.

Each of these Cisco ASA models brings specific advantages to varied environments. Their integrative capabilities enable businesses to enhance their security postures while benefiting from seamless scalability and management. As cybersecurity threats evolve, these advanced appliances play a vital role in protecting valuable digital assets.