Chapter 21 Configuring Cisco Intercompany Media Engine Proxy

Guidelines and Limitations

Having Cisco UCMs on more than one of the ASA interfaces is not supported with the Cisco Intercompany Media Engine Proxy. Having the Cisco UCMs on one trusted interface is especially necessary in an off path deployment because the ASA requires that you specify the listening interface for the mapping service and the Cisco UCMs must be connected on one trusted interface.

Multipart MIME is not supported.

Only existing SIP features and messages are supported.

H.264 is not supported.

RTCP is not supported. The ASA drops any RTCP traffic sent from the inside interface to the outside interface. The ASA does not convert RTCP traffic from the inside interface into SRTP traffic.

The Cisco Intercompany Media Engine Proxy configured on the ASA creates a dynamic SIP trunk for each connection to a remote enterprise. However, you cannot configure a unique subject name for each SIP trunk. The Cisco Intercompany Media Engine Proxy can have only one subject name configured for the proxy.

Additionally, the subject DN you configure for the Cisco Intercompany Media Engine Proxy match the domain name that has been set for the local Cisco UCM.

If a service policy rule for the Cisco Intercompany Media Engine Proxy is removed (by using the no service policy command) and reconfigured, the first call traversing the ASA will fail. The call fails over to the PSTN because the Cisco UCM does not know the connections are cleared and tries to use the recently cleared IME SIP trunk for the signaling.

To resolve this issue, you must additionally enter the clear connection all command and restart the ASA. If the failure is due to failover, the connections from the primary ASA are not synchronized to the standby ASA.

After the clear connection all command is issued on an ASA enabled with a UC-IME Proxy and the IME call fails over to the PSTN, the next IME call between an originating and terminating SCCP IP phone completes but does not have audio and is dropped after the signaling session is established.

An IME call between SCCP IP phones use the IME SIP trunk in both directions. Namely, the signaling from the calling to called party uses the IME SIP trunk. Then, the called party uses the reverse IME SIP trunk for the return signaling and media exchange. However, this connection is already cleared on the ASA, which causes the IME call to fail.

The next IME call (the third call after the clear connection all command is issued), will be completely successful.

Note This limitation does not apply when the originating and terminating IP phones are configured with SIP.

The ASA must be licensed and configured with enough TLS proxy sessions to handle the IME call volume. See “Licensing for Cisco Intercompany Media Engine” section on page 21-8for information about the licensing requirements for TLS proxy sessions.

This limitation occurs because an IME call cannot fall back to the PSTN when there are not enough TLS proxy sessions left to complete the IME call. An IME call between two SCCP IP phones requires the ASA to use two TLS proxy sessions to successfully complete the TLS handshake.

Assume for example, the ASA is configured to have a maximum of 100 TLS proxy sessions and IME calls between SCCP IP phones establish 101 TLS proxy sessions. In this example, the next IME call is initiated successfully by the originating SCCP IP phone but fails after the call is accepted by the terminating SCCP IP phone. The terminating IP phone rings and on answering the call, the call hangs due to an incomplete TLS handshake. The call does not fall back to the PSTN.

Cisco ASA Series Firewall ASDM Configuration Guide

21-10

Page 498
Image 498
Cisco Systems ASA 5505, ASA 5545-X, ASA 5555-X, ASA 5585-X, ASA 5580, ASA Services Module manual 21-10

ASA Services Module, ASA 5555-X, ASA 5545-X, ASA 5585-X, ASA 5580 specifications

Cisco Systems has long been a leader in the field of network security, and its Adaptive Security Appliance (ASA) series is a testament to this expertise. Within the ASA lineup, models such as the ASA 5505, ASA 5580, ASA 5585-X, ASA 5545-X, and ASA 5555-X stand out for their unique features, capabilities, and technological advancements.

The Cisco ASA 5505 is designed for small businesses or branch offices. It provides essential security features such as firewall protection, flexible VPN capabilities, and intrusion prevention. The ASA 5505 supports a user-friendly interface, allowing for straightforward management. Its built-in threat detection and prevention tools provide a layered defense, and with scalability in mind, it can accommodate various expansion options as organizational needs grow.

Moving up the line, the ASA 5580 delivers greater throughput and advanced security features. This model is suited for medium to large enterprises that require robust protection against increasingly sophisticated threats. Its multi-core architecture allows it to manage high volumes of traffic seamlessly while maintaining excellent performance levels. The ASA 5580 also supports application-layer security and customizable access policies, making it highly adaptable to diverse security environments.

The ASA 5585-X further enhances Cisco's security offerings with advanced malware protection and extensive security intelligence capabilities. It incorporates next-generation firewall features, including context-aware security, and supports advanced threat detection technologies. This model is ideal for large enterprises or data centers that prioritize security while ensuring uninterrupted network performance and availability.

For enterprises requiring a balance of performance and security, the ASA 5545-X presents a compelling option. This model features scalable performance metrics, high availability, and integrated advanced threat protection. Coupled with advanced endpoint protection and detailed monitoring capabilities, the ASA 5545-X enables organizations to manage their security posture effectively.

Lastly, the ASA 5555-X blends cutting-edge technologies with strong security infrastructures. It boasts high throughput and the ability to execute deep packet inspections. Its sophisticated architecture supports threat intelligence feeds that provide real-time security updates, making it a powerful tool against modern threats.

Each of these Cisco ASA models brings specific advantages to varied environments. Their integrative capabilities enable businesses to enhance their security postures while benefiting from seamless scalability and management. As cybersecurity threats evolve, these advanced appliances play a vital role in protecting valuable digital assets.