Chapter 8 Configuring AAA Rules for Network Access

Configuring Authorization for Network Access

permit udp any host 10.0.0.253

permit icmp any host 10.0.0.253

permit tcp any host 10.0.0.252

permit udp any host 10.0.0.252

permit icmp any host 10.0.0.252

permit ip any any

+--------------------------------------------

+

For more information about creating downloadable ACLs and associating them with users, see the user guide for your version of Cisco Secure ACS.

On the ASA, the downloaded ACL has the following name:

#ACSACL#-ip-acl_name-number

The acl_name argument is the name that is defined on Cisco Secure ACS (acs_ten_acl in the preceding example), and number is a unique version ID generated by Cisco Secure ACS.

The downloaded ACL on the ASA consists of the following lines:

access-list #ACSACL#-ip-asa-acs_ten_acl-3b5385f7 permit tcp any host 10.0.0.254 access-list #ACSACL#-ip-asa-acs_ten_acl-3b5385f7 permit udp any host 10.0.0.254 access-list #ACSACL#-ip-asa-acs_ten_acl-3b5385f7 permit icmp any host 10.0.0.254 access-list #ACSACL#-ip-asa-acs_ten_acl-3b5385f7 permit tcp any host 10.0.0.253 access-list #ACSACL#-ip-asa-acs_ten_acl-3b5385f7 permit udp any host 10.0.0.253 access-list #ACSACL#-ip-asa-acs_ten_acl-3b5385f7 permit icmp any host 10.0.0.253 access-list #ACSACL#-ip-asa-acs_ten_acl-3b5385f7 permit tcp any host 10.0.0.252 access-list #ACSACL#-ip-asa-acs_ten_acl-3b5385f7 permit udp any host 10.0.0.252 access-list #ACSACL#-ip-asa-acs_ten_acl-3b5385f7 permit icmp any host 10.0.0.252 access-list #ACSACL#-ip-asa-acs_ten_acl-3b5385f7 permit ip any any

Configuring Any RADIUS Server for Downloadable ACLs

You can configure any RADIUS server that supports Cisco IOS RADIUS VSAs to send user-specific ACLs to the ASA in a Cisco IOS RADIUS cisco-av-pair VSA (vendor 9, attribute 1).

In the cisco-av-pair VSA, configure one or more ACEs that are similar to the access-list extended command (see command reference), except that you replace the following command prefix:

access-list acl_name extended

with the following text:

ip:inacl#nnn=

The nnn argument is a number in the range from 0 to 999999999 that identifies the order of the command statement to be configured on the ASA. If this parameter is omitted, the sequence value is 0, and the order of the ACEs inside the cisco-av-pair RADIUS VSA is used.

The following example is an ACL definition as it should be configured for a cisco-av-pair VSA on a RADIUS server:

ip:inacl#1=permit tcp 10.1.0.0 255.0.0.0 10.0.0.0 255.0.0.0 ip:inacl#99=deny tcp any any

ip:inacl#2=permit udp 10.1.0.0 255.0.0.0 10.0.0.0 255.0.0.0 ip:inacl#100=deny udp any any

ip:inacl#3=permit icmp 10.1.0.0 255.0.0.0 10.0.0.0 255.0.0.0

For information about making unique per user the ACLs that are sent in the cisco-av-pair attribute, see the documentation for your RADIUS server.

On the ASA, the downloaded ACL name has the following format:

AAA-user-username

Cisco ASA Series Firewall ASDM Configuration Guide

8-16

Page 256
Image 256
Cisco Systems ASA 5580, ASA 5505, ASA 5545-X, ASA 5555-X, ASA 5585-X manual Configuring Any Radius Server for Downloadable ACLs

ASA Services Module, ASA 5555-X, ASA 5545-X, ASA 5585-X, ASA 5580 specifications

Cisco Systems has long been a leader in the field of network security, and its Adaptive Security Appliance (ASA) series is a testament to this expertise. Within the ASA lineup, models such as the ASA 5505, ASA 5580, ASA 5585-X, ASA 5545-X, and ASA 5555-X stand out for their unique features, capabilities, and technological advancements.

The Cisco ASA 5505 is designed for small businesses or branch offices. It provides essential security features such as firewall protection, flexible VPN capabilities, and intrusion prevention. The ASA 5505 supports a user-friendly interface, allowing for straightforward management. Its built-in threat detection and prevention tools provide a layered defense, and with scalability in mind, it can accommodate various expansion options as organizational needs grow.

Moving up the line, the ASA 5580 delivers greater throughput and advanced security features. This model is suited for medium to large enterprises that require robust protection against increasingly sophisticated threats. Its multi-core architecture allows it to manage high volumes of traffic seamlessly while maintaining excellent performance levels. The ASA 5580 also supports application-layer security and customizable access policies, making it highly adaptable to diverse security environments.

The ASA 5585-X further enhances Cisco's security offerings with advanced malware protection and extensive security intelligence capabilities. It incorporates next-generation firewall features, including context-aware security, and supports advanced threat detection technologies. This model is ideal for large enterprises or data centers that prioritize security while ensuring uninterrupted network performance and availability.

For enterprises requiring a balance of performance and security, the ASA 5545-X presents a compelling option. This model features scalable performance metrics, high availability, and integrated advanced threat protection. Coupled with advanced endpoint protection and detailed monitoring capabilities, the ASA 5545-X enables organizations to manage their security posture effectively.

Lastly, the ASA 5555-X blends cutting-edge technologies with strong security infrastructures. It boasts high throughput and the ability to execute deep packet inspections. Its sophisticated architecture supports threat intelligence feeds that provide real-time security updates, making it a powerful tool against modern threats.

Each of these Cisco ASA models brings specific advantages to varied environments. Their integrative capabilities enable businesses to enhance their security postures while benefiting from seamless scalability and management. As cybersecurity threats evolve, these advanced appliances play a vital role in protecting valuable digital assets.