Chapter 28 Using Protection Tools

Configuring TCP Options

alters the packet to request 1200 bytes. See the “Controlling Fragmentation with the Maximum Transmission Unit and TCP Maximum Segment Size” section on page 11-8for more information.

Force Minimum Segment Size for TCPOverrides the maximum segment size to be no less than the number of bytes you set, between 48 and any maximum number. This feature is disabled by default (set to 0). Both the host and the server can set the maximum segment size when they first establish a connection. If either maximum is less than the value you set for the Force Minimum Segment Size for TCP Proxy field, then the ASA overrides the maximum and inserts the “minimum” value you set (the minimum value is actually the smallest maximum allowed). For example, if you set a minimum size of 400 bytes, if a host requests a maximum value of 300 bytes, then the ASA alters the packet to request 400 bytes.

Force TCP Connection to Linger in TIME_WAIT State for at Least 15 SecondsForces each TCP connection to linger in a shortened TIME_WAIT state of at least 15 seconds after the final normal TCP close-down sequence. You might want to use this feature if an end host application default TCP terminating sequence is a simultaneous close. The default behavior of the ASA is to track the shutdown sequence and release the connection after two FINs and the ACK of the last FIN segment. This quick release heuristic enables the ASA to sustain a high connection rate, based on the most common closing sequence, known as the normal close sequence. However, in a simultaneous close, both ends of the transaction initiate the closing sequence, as opposed to the normal close sequence where one end closes and the other end acknowledges prior to initiating its own closing sequence (see RFC 793). Thus, in a simultaneous close, the quick release forces one side of the connection to linger in the CLOSING state. Having many sockets in the CLOSING state can degrade the performance of an end host. For example, some WinSock mainframe clients are known to exhibit this behavior and degrade the performance of the mainframe server. Using this feature creates a window for the simultaneous close down sequence to complete.

TCP Reset Settings

The Configuration > Firewall > Advanced > TCP Options > TCP Reset Settings dialog box sets the inbound and outbound reset settings for an interface.

Fields

Send Reset Reply for Denied Inbound TCP Packets—Sends TCP resets for all inbound TCP sessions that attempt to transit the ASA and are denied by the ASA based on ACLs or AAA settings. Traffic between same security level interfaces is also affected. When this option is not enabled, the ASA silently discards denied packets.

You might want to explicitly send resets for inbound traffic if you need to reset identity request (IDENT) connections. When you send a TCP RST (reset flag in the TCP header) to the denied host, the RST stops the incoming IDENT process so that you do not have to wait for IDENT to time out. Waiting for IDENT to time out can cause traffic to slow because outside hosts keep retransmitting the SYN until the IDENT times out, so the service resetinbound command might improve performance.

Send Reset Reply for Denied Outbound TCP Packets—Sends TCP resets for all outbound TCP sessions that attempt to transit the ASA and are denied by the ASA based on ACLs or AAA settings. Traffic between same security level interfaces is also affected. When this option is not enabled, the ASA silently discards denied packets. This option is enabled by default. You might want to disable outbound resets to reduce the CPU load during traffic storms, for example.

Cisco ASA Series Firewall ASDM Configuration Guide

28-4

Page 628
Image 628
Cisco Systems ASA 5580, ASA 5505, ASA 5545-X, ASA 5555-X, ASA 5585-X, ASA Services Module manual TCP Reset Settings, 28-4

ASA Services Module, ASA 5555-X, ASA 5545-X, ASA 5585-X, ASA 5580 specifications

Cisco Systems has long been a leader in the field of network security, and its Adaptive Security Appliance (ASA) series is a testament to this expertise. Within the ASA lineup, models such as the ASA 5505, ASA 5580, ASA 5585-X, ASA 5545-X, and ASA 5555-X stand out for their unique features, capabilities, and technological advancements.

The Cisco ASA 5505 is designed for small businesses or branch offices. It provides essential security features such as firewall protection, flexible VPN capabilities, and intrusion prevention. The ASA 5505 supports a user-friendly interface, allowing for straightforward management. Its built-in threat detection and prevention tools provide a layered defense, and with scalability in mind, it can accommodate various expansion options as organizational needs grow.

Moving up the line, the ASA 5580 delivers greater throughput and advanced security features. This model is suited for medium to large enterprises that require robust protection against increasingly sophisticated threats. Its multi-core architecture allows it to manage high volumes of traffic seamlessly while maintaining excellent performance levels. The ASA 5580 also supports application-layer security and customizable access policies, making it highly adaptable to diverse security environments.

The ASA 5585-X further enhances Cisco's security offerings with advanced malware protection and extensive security intelligence capabilities. It incorporates next-generation firewall features, including context-aware security, and supports advanced threat detection technologies. This model is ideal for large enterprises or data centers that prioritize security while ensuring uninterrupted network performance and availability.

For enterprises requiring a balance of performance and security, the ASA 5545-X presents a compelling option. This model features scalable performance metrics, high availability, and integrated advanced threat protection. Coupled with advanced endpoint protection and detailed monitoring capabilities, the ASA 5545-X enables organizations to manage their security posture effectively.

Lastly, the ASA 5555-X blends cutting-edge technologies with strong security infrastructures. It boasts high throughput and the ability to execute deep packet inspections. Its sophisticated architecture supports threat intelligence feeds that provide real-time security updates, making it a powerful tool against modern threats.

Each of these Cisco ASA models brings specific advantages to varied environments. Their integrative capabilities enable businesses to enhance their security postures while benefiting from seamless scalability and management. As cybersecurity threats evolve, these advanced appliances play a vital role in protecting valuable digital assets.