Cisco Systems WAVE594K9, 694 manual Electromagnetic and Radio Frequency Interference, Magnetism

Models: 694 WAVE594K9

1 84
Download 84 pages 30.33 Kb
Page 78
Image 78
Electromagnetic and Radio Frequency Interference

Appendix B Maintaining the WAVE-594 and WAVE-694

Maintaining Your Site Environment

Electromagnetic and Radio Frequency Interference

Electromagnetic interference (EMI) and radio frequency interference (RFI) from a system can adversely affect devices such as radio and television (TV) receivers operating near the system. Radio frequencies emanating from a system can also interfere with cordless and low-power telephones. Conversely, RFI from high-power telephones can cause spurious characters to appear on the system’s monitor screen.

RFI is defined as any EMI with a frequency above 10 kilohertz (kHz). This type of interference can travel from the system to other devices through the power cable and power source or through the air like transmitted radio waves. The Federal Communications Commission (FCC) publishes specific regulations to limit the amount of EMI and RFI emitted by computing equipment. Each system meets these FCC regulations.

To reduce the possibility of EMI and RFI, follow these guidelines:

Operate the system only with the system cover installed.

Ensure that the screws on all peripheral cable connectors are securely fastened to their corresponding connectors on the back of the system.

Always use shielded cables with metal connector shells for attaching peripherals to the system.

Magnetism

Because they store data magnetically, hard disk drives are extremely susceptible to the effects of magnetism. Hard disk drives should never be stored near magnetic sources such as the following:

Monitors

TV sets

Printers

Telephones with real bells

Fluorescent lights

Shock and Vibration

Excessive shock can damage the function, external appearance, and physical structure of a system. Each system has been designed to operate properly even after withstanding a minimum of six consecutively executed shock pulses in the positive and negative x, y, and z axes (one pulse on each side of the system). Each shock pulse can measure up to 5 gravities (G) for up to 11 milliseconds (ms). In storage, the system can withstand shock pulses of 20 G for 11 ms.

Excessive vibration can cause the same problems as mentioned earlier for shock, as well as causing components to become loose in their sockets or connectors. Systems can be subject to significant vibration when being transported by a vehicle or when operated in an environment with machinery that causes vibration.

Cisco Wide Area Virtualization Engine 594 and 694 Hardware Installation Guide

 

B-4

OL-24619-02

 

 

 

Page 78
Image 78
Cisco Systems WAVE594K9, 694 manual Electromagnetic and Radio Frequency Interference, Magnetism, Shock and Vibration