Configuring SPAN and RSPAN

SPAN and RSPAN

BothIn a SPAN session, you can also monitor a port or VLAN for both received and sent packets. This is the default.

The default configuration for local SPAN session ports is to send all packets untagged. SPAN also does not normally monitor bridge protocol data unit (BPDU) packets and Layer 2 protocols, such as Cisco Discovery Protocol (CDP), VLAN Trunk Protocol (VTP), Dynamic Trunking Protocol (DTP), Spanning Tree Protocol (STP), and Port Aggregation Protocol (PAgP). However, when you enter the encapsulation replicate keywords when configuring a destination port, these changes occur:

Packets are sent on the destination port with the same encapsulation (untagged, Inter-Switch Link (ISL), or IEEE 802.1Q) that they had on the source port.

Packets of all types, including BPDU and Layer 2 protocol packets, are monitored.

Therefore, a local SPAN session with encapsulation replicate enabled can have a mixture of untagged, ISL, and IEEE 802.1Q tagged packets appear on the destination port.

Switch congestion can cause packets to be dropped at ingress source ports, egress source ports, or SPAN destination ports. In general, these characteristics are independent of one another. For example:

A packet might be forwarded normally but dropped from monitoring due to an oversubscribed SPAN destination port.

An ingress packet might be dropped from normal forwarding, but still appear on the SPAN destination port.

An egress packet dropped because of switch congestion is also dropped from egress SPAN.

In some SPAN configurations, multiple copies of the same source packet are sent to the SPAN destination port. For example, a bidirectional (both Rx and Tx) SPAN session is configured for the Rx monitor on port A and Tx monitor on port B. If a packet enters the switch through port A and is switched to port B, both incoming and outgoing packets are sent to the destination port. Both packets are the same unless a Layer 3 rewrite occurs, in which case the packets are different because of the packet modification.

Source Ports

A source port (also called a monitored port) is a switched or routed port that you monitor for network traffic analysis. In a local SPAN session or RSPAN source session, you can monitor source ports or VLANs for traffic in one or both directions. The switch supports any number of source ports (up to the maximum number of available ports on the switch) and any number of source VLANs (up to the maximum number of VLANs supported). However, the switch supports a maximum of (local or RSPAN) with source ports or VLANs. You cannot mix ports and VLANs in a single session.

A source port has these characteristics:

It can be monitored in multiple SPAN sessions.

Each source port can be configured with a direction (ingress, egress, or both) to monitor.

It can be any port type (for example, EtherChannel, Gigabit Ethernet, and so forth).

For EtherChannel sources, you can monitor traffic for the entire EtherChannel or individually on a physical port as it participates in the port channel.

It can be an access port, trunk port, routed port, or voice VLAN port.

It cannot be a destination port.

 

Catalyst 2960-X Switch Network Management Configuration Guide, Cisco IOS Release 15.0(2)EX

72

OL-29044-01

Page 84
Image 84
Cisco Systems WSC2960X24TDL, WSC2960X48TSL, WSC2960X24PSL, WSC2960X24TSLL, WSC2960X24PDL, C2960XSTACK manual Source Ports

WSC2960X24TSL, C2960XSTACK, WSC2960X24PDL, WSC2960X24TSLL, WSC2960X24PSL specifications

Cisco Systems has long been a leader in networking technology, and its range of switching products exemplifies its commitment to high performance and reliability. Among its popular offerings are the Catalyst 2960-X and 2960-XR series switches, including models like WSC2960X48TSL, WSC2960XR48FPDI, WSC2960XR24TDI, and WSC2960XR48LPDI. These switches are designed to deliver efficient Layer 2 and Layer 3 capabilities, making them ideal for enterprise and small to medium-sized business networks.

The WSC2960X48TSL model boasts 48 Ethernet ports, providing ample connectivity for various devices. It supports Power over Ethernet (PoE), making it suitable for powering IP cameras, wireless access points, and VoIP phones. The switch also features Cisco’s Smart Operations technology, which simplifies network management and enhances user experience through automated features such as Cisco Auto Smartports and Auto QoS.

Turning to the WSC2960XR48FPDI, this version also features 48 ports but with enhanced redundancy and power capabilities, making it suitable for critical applications where uptime is paramount. This switch offers dual power supply options, ensuring that even in the event of a power failure, network operations continue seamlessly. Its Flexible NetFlow feature enables enhanced visibility and monitoring of traffic, allowing businesses to optimize their bandwidth usage and troubleshoot issues more efficiently.

The WSC2960XR24TDI model, with its 24 ports, is perfectly designed for networks with fewer devices yet still demands robust performance. It also includes advanced security features, such as IEEE 802.1X port-based authentication, enhancing the protection of sensitive data and communications within the network.

Lastly, the WSC2960XR48LPDI model is tailored for environments that require high availability and robust performance, featuring 48 ports along with Layer 3 static routing capabilities. With its support for IPv6 and advanced QoS features, this switch is prepared for the future of networking, accommodating the increasing demand for bandwidth and reliable connectivity.

All these switches utilize Cisco IOS software, providing a familiar interface for network administrators. They also incorporate advanced troubleshooting tools, like Cisco Prime, which facilitate effective network management. Collectively, the WSC2960 series switches represent a comprehensive solution for businesses seeking dependable, scalable, and manageable networking options. With their combination of performance, features, and reliability, these Cisco switches are essential for meeting the demands of modern networking.