Instruction Manual

World Class 3000

Appendix B Rev. 2.2 January 1997

SYMPTOM

HEATER DOES NOT HEAT

UP (DOES NOT INCREASE

IN OUTPUT).

SET METER* FOR 50 VAC.

PLACE PROBES ON TERMINAL BLOCK J2, “FROM PROBE”, PROBE HEATER.

 

 

 

METER INDICATES

 

PULSATING NOMINAL

NO

44 VAC.

 

 

 

 

SET METER TO 250 VAC.

PLACE METER PROBES ON J2, “FROM ELECTRONICS”, ANALOG HEATER.

METER SHOULD REGISTER A PULSATING NOMINAL 115 VAC.

YES

DISCONNECT POWER TO HPS AND PROBE ELECTRONICS. CHECK ALL FOUR FUSES IN HPS.

B

NO

CHECK FUSES IN PROBE

 

ELECTRONICS.

 

 

 

 

 

 

IF FUSES OK, POSSIBLE

PROBE ELECTRONICS TRIAC

FAILURE.

YES

DISCONNECT POWER FROM HPS & PROBE ELECT. SET METER ON RX1.

MEASURE RESISTANCE OF HEATER BY PLACING PROBES ON TERMINAL BLOCK J2, “FROM PROBE”,

PROBE HEATER.

RESISTANCE MEASURED SHOULD BE NOMINALLY 12 OHMS.

NO

FUSES BLOWN IN HPS.

YES

CHECK THAT LINE VOLTAGE IS CORRECT BY SELECTING CORRECT JUMPERS ACCORDING TO CHART ON INSIDE OF HPS COVER.

REPLACE BLOWN FUSES.

HEATER IS OPEN.

REPLACE HEATER.

NO

CHECK JUMPER JM2 IS

 

INSTALLED.

 

 

 

 

 

YES

 

 

 

 

POSSIBLE TRIAC FAILURE.

 

REPLACE HPS

 

MOTHERBOARD.

 

 

 

*SIMPSON MODEL 260 OR EQUIVALENT MULTIMETER.

35730004

Figure B-4. HPS Troubleshooting Flowchart, #1

Rosemount Analytical Inc. A Division of Emerson Process Management

Appendices B-5

Page 65
Image 65
Emerson 3000 manual Symptom, Figure B-4. HPS Troubleshooting Flowchart, #1

3000 specifications

The Emerson 3000 is a cutting-edge control system designed to enhance the efficiency, reliability, and precision of industrial operations. Employed across various sectors such as oil and gas, pharmaceutical, food and beverage, and power generation, the Emerson 3000 has gained recognition for its robustness and versatility.

One of the main features of the Emerson 3000 is its advanced process control capability. With integrated control algorithms, it can optimize complex processes in real-time, resulting in significant improvements in production rates and reduced operational costs. The system's predictive analytics capabilities enable operators to anticipate equipment failures and maintenance needs, allowing for proactive management and minimizing downtime.

The Emerson 3000 features a modular architecture, providing flexibility for scaling and customization. Operators can easily tailor the system to fit specific application needs, whether it requires additional control loops or integration with other systems. This adaptability is particularly beneficial for facilities planning for future expansions or modifications.

Another technology highlight of the Emerson 3000 is its seamless integration with the latest Internet of Things (IoT) advancements. The system is designed to communicate effectively with a variety of smart devices and sensors, harnessing data to create insightful analytics that drive operational excellence. This connectivity empowers businesses to leverage big data for improved decision-making and increased agility.

Additionally, the Emerson 3000 incorporates state-of-the-art cybersecurity measures to safeguard critical data and operations. With built-in security protocols and regular updates, the system protects against emerging cyber threats, ensuring the integrity of the control network.

User experience is also a focal point of the Emerson 3000. The intuitive graphical user interface presents complex data in a user-friendly format, making it easier for operators to monitor system performance and respond to alerts quickly. This ease of use contributes to enhanced safety and operational efficiency.

In summary, the Emerson 3000 represents a fusion of advanced process control, modular design, IoT connectivity, robust cybersecurity, and user-centric interface, making it an ideal choice for industries seeking to enhance their operational performance while adapting to ever-evolving technological landscapes.