Interface

(5) Sector Number register (X’1F3’)

The contents of this register indicate the starting sector number for the subsequent command. The sector number should be between X’01’ and [the number of sectors per track defined by INITIALIZE DEVICE PARAMETERS command.

Under the LBA mode, this register indicates LBA bits 7 to 0.

Under the LBA mode of the EXT system command, LBA bits 31 to 24 are set in the first setting, and LBA bits 7 to 0 are set in the second setting.

(6) Cylinder Low register (X’1F4’)

The contents of this register indicate low-order 8 bits of the starting cylinder address for any disk-access.

At the end of a command, the contents of this register are updated to the current cylinder number.

Under the LBA mode, this register indicates LBA bits 15 to 8.

Under the LBA mode of the EXT system command, LBA bits 39 to 32 are set in the first setting, and LBA bits 15 to 8 are set in the second setting.

(7) Cylinder High register (X’1F5’)

The contents of this register indicate high-order 8 bits of the disk-access start cylinder address.

At the end of a command, the contents of this register are updated to the current cylinder number. The high-order 8 bits of the cylinder address are set to the Cylinder High register.

Under the LBA mode, this register indicates LBA bits 23 to 16.

Under the LBA mode of the EXT system command, LBA bits 47 to 40 are set in the first setting, and LBA bits 23 to 16 are set in the second setting.

5-10

C141-E221

Page 86
Image 86
Fujitsu MHV2040AS, MHV2080AS Sector Number register X’1F3’, Cylinder Low register X’1F4’, Cylinder High register X’1F5’

MHV2060AS, MHV2080AS, MHV2040AS specifications

Fujitsu's MHV series of hard disk drives, specifically the MHV2040AS, MHV2080AS, and MHV2060AS models, are designed to deliver efficient performance and reliability for a range of applications, particularly in desktop computing and entry-level servers. Each of these drives adheres to the Serial ATA (SATA) interface, which ensures compatibility across a wide range of systems and is known for its cost-effectiveness and simplicity.

The MHV2040AS features a storage capacity of 40GB, making it suitable for basic computing tasks including document editing, web browsing, and media playback. The MHV2060AS steps it up with a 60GB capacity, allowing for increased data storage needs while still maintaining a high level of performance. The largest of the trio, the MHV2080AS, offers an impressive 80GB of space, positioning it well for users who require additional room for applications, games, and multimedia files.

All drives in this series are equipped with a rotational speed of 5400 RPM, which strikes a balance between speed and power consumption. This speed is adequate for everyday tasks and allows for quick boot times and file access, making them ideal for home and small office environments. Additionally, the drives feature an average latency of 5.5 milliseconds, contributing to their overall performance in retrieving data.

In terms of technology, the MHV series employs a fluid dynamic bearing (FDB) motor, which not only enhances reliability but also reduces noise levels during operation. The FDB technology helps improve the longevity of the drives by minimizing wear on mechanical components. This characteristic is particularly important for users seeking quieter drives, especially in work environments that require minimal disruption.

The drives also incorporate advanced power management features that significantly reduce power consumption, making them an environmentally friendly choice for users mindful of their carbon footprint. These drives are equipped with energy-saving modes that optimize their performance when not in full use, ensuring lower operational costs and longer lifespan.

Overall, the Fujitsu MHV2040AS, MHV2080AS, and MHV2060AS hard drives provide a solid solution for users looking for dependable storage with a range of capacities to fit their needs. Their performance, combined with noise reduction technologies and energy efficiency, makes them a notable choice for various computing environments, from single-user desktops to small business applications.