Theory of Device Operation

4.7.4 Actuator motor control

The voice coil motor (VCM) is controlled by feeding back the servo data recorded on the data surface. The MPU fetches the position sense data on the servo frame at a constant interval of sampling time, executes calculation, and updates the VCM drive current.

The servo control of the actuator includes the operation to move the head to the reference cylinder, the seek operation to move the head to the target cylinder to read or write data, and the track-following operation to position the head onto the target track.

(1) Operation to move the head to the reference cylinder

The MPU moves the head to the reference cylinder when the power is turned. The reference cylinder is in the data area.

When power is applied the heads are moved from the outside of media to the normal servo data zone in the following sequence:

a)Micro current is fed to the VCM to press the head against the outer direction.

b)The head is loaded on the disk.

c)When the servo mark is detected the head is moved slowly toward the inner circumference at a constant speed.

d)If the head is stopped at the reference cylinder from there. Track following control starts.

(2) Seek operation

Upon a data read/write request from the host, the MPU confirms the necessity of access to the disk. If a read/write instruction is issued, the MPU seeks the desired track.

The MPU feeds the VCM current via the D/A converter and power amplifier to move the head. The MPU calculates the difference (speed error) between the specified target position and the current position for each sampling timing during head moving. The MPU then feeds the VCM drive current by setting the calculated result into the D/A converter. The calculation is digitally executed by the firmware. When the head arrives at the target cylinder, the track is followed.

(3) Track following operation

Except during head movement to the reference cylinder and seek operation under the spindle rotates in steady speed, the MPU does track following control. To position the head at the center of a track, the DSP drives the VCM by feeding micro current. For each sampling time, the VCM drive current is determined by filtering the position difference between the target position and the position clarified by the detected position sense data. The filtering includes servo compensation. These are digitally controlled by the firmware.

4-18

C141-E221

Page 74
Image 74
Fujitsu MHV2040AS, MHV2080AS Actuator motor control, Operation to move the head to the reference cylinder, Seek operation

MHV2060AS, MHV2080AS, MHV2040AS specifications

Fujitsu's MHV series of hard disk drives, specifically the MHV2040AS, MHV2080AS, and MHV2060AS models, are designed to deliver efficient performance and reliability for a range of applications, particularly in desktop computing and entry-level servers. Each of these drives adheres to the Serial ATA (SATA) interface, which ensures compatibility across a wide range of systems and is known for its cost-effectiveness and simplicity.

The MHV2040AS features a storage capacity of 40GB, making it suitable for basic computing tasks including document editing, web browsing, and media playback. The MHV2060AS steps it up with a 60GB capacity, allowing for increased data storage needs while still maintaining a high level of performance. The largest of the trio, the MHV2080AS, offers an impressive 80GB of space, positioning it well for users who require additional room for applications, games, and multimedia files.

All drives in this series are equipped with a rotational speed of 5400 RPM, which strikes a balance between speed and power consumption. This speed is adequate for everyday tasks and allows for quick boot times and file access, making them ideal for home and small office environments. Additionally, the drives feature an average latency of 5.5 milliseconds, contributing to their overall performance in retrieving data.

In terms of technology, the MHV series employs a fluid dynamic bearing (FDB) motor, which not only enhances reliability but also reduces noise levels during operation. The FDB technology helps improve the longevity of the drives by minimizing wear on mechanical components. This characteristic is particularly important for users seeking quieter drives, especially in work environments that require minimal disruption.

The drives also incorporate advanced power management features that significantly reduce power consumption, making them an environmentally friendly choice for users mindful of their carbon footprint. These drives are equipped with energy-saving modes that optimize their performance when not in full use, ensuring lower operational costs and longer lifespan.

Overall, the Fujitsu MHV2040AS, MHV2080AS, and MHV2060AS hard drives provide a solid solution for users looking for dependable storage with a range of capacities to fit their needs. Their performance, combined with noise reduction technologies and energy efficiency, makes them a notable choice for various computing environments, from single-user desktops to small business applications.