Cypress CY7C1412AV18, CY7C1410AV18, CY7C1425AV18, CY7C1414AV18 manual BWS0 BWS1 BWS2 BWS3

Page 11

CY7C1410AV18, CY7C1425AV18

CY7C1412AV18, CY7C1414AV18

Write Cycle Descriptions

The write cycle description table for CY7C1425AV18 follows. [2, 8]

BWS0

K

K

Comments

L

L–H

During the Data portion of a write sequence, the single byte (D[8:0]) is written into the device.

L

L–H

During the Data portion of a write sequence, the single byte (D[8:0]) is written into the device.

H

L–H

No data is written into the device during this portion of a write operation.

 

 

 

 

H

L–H

No data is written into the device during this portion of a write operation.

 

 

 

 

Write Cycle Descriptions

The write cycle description table for CY7C1414AV18 follows. [2, 8]

 

BWS0

 

BWS1

 

BWS2

 

BWS3

K

 

K

Comments

 

L

 

L

 

L

 

L

L–H

 

During the Data portion of a write sequence, all four bytes (D[35:0]) are written into

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

the device.

 

L

 

L

 

L

 

L

L–H

During the Data portion of a write sequence, all four bytes (D[35:0]) are written into

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

the device.

 

L

 

H

 

H

 

H

L–H

 

During the Data portion of a write sequence, only the lower byte (D[8:0]) is written

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

into the device. D[35:9] remains unaltered.

 

L

 

H

 

H

 

H

L–H

During the Data portion of a write sequence, only the lower byte (D[8:0]) is written

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

into the device. D[35:9] remains unaltered.

 

H

 

L

 

H

 

H

L–H

 

During the Data portion of a write sequence, only the byte (D[17:9]) is written into

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

the device. D[8:0] and D[35:18] remains unaltered.

 

H

 

L

 

H

 

H

L–H

During the Data portion of a write sequence, only the byte (D[17:9]) is written into

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

the device. D[8:0] and D[35:18] remains unaltered.

 

H

 

H

 

L

 

H

L–H

 

During the Data portion of a write sequence, only the byte (D[26:18]) is written into

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

the device. D[17:0] and D[35:27] remains unaltered.

 

H

 

H

 

L

 

H

L–H

During the Data portion of a write sequence, only the byte (D[26:18]) is written into

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

the device. D[17:0] and D[35:27] remains unaltered.

 

H

 

H

 

H

 

L

L–H

 

During the Data portion of a write sequence, only the byte (D[35:27]) is written into

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

the device. D[26:0] remains unaltered.

 

H

 

H

 

H

 

L

L–H

During the Data portion of a write sequence, only the byte (D[35:27]) is written into

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

the device. D[26:0] remains unaltered.

 

H

 

H

 

H

 

H

L–H

 

No data is written into the device during this portion of a write operation.

 

 

 

 

 

 

 

 

 

 

 

 

H

 

H

 

H

 

H

L–H

No data is written into the device during this portion of a write operation.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Document #: 38-05615 Rev. *E

Page 11 of 29

[+] Feedback

Image 11
Contents Selection Guide FeaturesConfigurations Functional DescriptionDoff Logic Block Diagram CY7C1410AV18Logic Block Diagram CY7C1425AV18 Logic Block Diagram CY7C1414AV18 Logic Block Diagram CY7C1412AV18CY7C1425AV18 4M x Pin ConfigurationBall Fbga 15 x 17 x 1.4 mm Pinout CY7C1410AV18 4M xCY7C1414AV18 1M x CY7C1412AV18 2M xWPS BWS Pin Name Pin Description Pin DefinitionsTDO for Jtag Power Supply Inputs to the Core of the DevicePower Supply Inputs for the Outputs of the Device Referenced with Respect toFunctional Overview Sram #1 Application ExampleProgrammable Impedance Echo ClocksBWS0 BWS1 Truth TableWrite Cycle Descriptions RPS WPSBWS0 BWS1 BWS2 BWS3 BWS0Ieee 1149.1 Serial Boundary Scan Jtag Idcode TAP Controller State Diagram TCK TAP Controller Block DiagramTAP Electrical Characteristics TDITAP Timing and Test Conditions TAP AC Switching CharacteristicsRegister Name Bit Size Identification Register DefinitionsScan Register Sizes Instruction CodesBit # Bump ID Boundary Scan OrderDLL Constraints Power Up Sequence in QDR-II SramPower Up Sequence Maximum Ratings Electrical CharacteristicsDC Electrical Characteristics AC Electrical Characteristics Parameter Description Test Conditions Fbga Unit CapacitanceThermal Resistance Parameter Description Test Conditions Max UnitDLL Timing Switching CharacteristicsCypress Consortium Description 250 MHz 200 MHz 167 MHz Unit Parameter Min MaxWrite NOP Switching WaveformsWrite Read Ordering Information 167 Ball Fbga 15 x 17 x 1.4 mm Package DiagramNXR Document HistoryREV ECN no Submission ORIG. Description of Change Date SYTUSB Sales, Solutions, and Legal InformationWorldwide Sales and Design Support Products PSoC Solutions

CY7C1410AV18, CY7C1425AV18, CY7C1414AV18, CY7C1412AV18 specifications

Cypress Semiconductor, a prominent player in the semiconductor industry, offers a robust lineup of synchronous Static Random Access Memory (SRAM) products, including the CY7C1412AV18, CY7C1414AV18, CY7C1425AV18, and CY7C1410AV18. These memory chips are designed for high-performance applications, showcasing significant advancements in speed, density, and power efficiency.

The CY7C1412AV18 is a 1.2 Megabit SRAM with a 2.5V operating voltage. It boasts a maximum access time of 12 nanoseconds, specifically engineered for applications requiring fast data processing. This chip is particularly well-suited for networking and telecommunications applications where quick data retrieval is essential.

Next in the lineup, the CY7C1414AV18 offers a 1.44 Megabit capacity with a similar operating voltage and access time. This model's increased density allows for more data storage while maintaining performance levels, making it an excellent choice for automotive and industrial applications that demand reliability and speed.

Moreover, the CY7C1425AV18 is a more advanced solution with a 2 Megabit capacity. It integrates innovative features such as pipelined architecture, which enhances throughput and minimizes latency, making it ideal for high-speed processing applications like video and image processing in various electronic devices.

Lastly, the CY7C1410AV18 rounds out the series with a 1 Megabit capacity and is tailored for critical applications where space and power consumption are constraints. Its low power consumption makes it increasingly suitable for battery-operated devices, contributing to energy efficiency and extended operational life.

Each of these memory chips incorporates Cypress's advanced technology, including CMOS (Complementary Metal-Oxide-Semiconductor) fabrication processes, which ensures high performance while maintaining low static and dynamic power consumption. The SRAMs are designed with a 3.3V data interface, ensuring compatibility with modern digital systems.

In summary, Cypress's CY7C1412AV18, CY7C1414AV18, CY7C1425AV18, and CY7C1410AV18 SRAM chips stand out with their high access speeds, low power consumption, and varying capacities. These components are optimized for a wide range of applications, including networking, automotive, and consumer electronics, confirming Cypress's commitment to delivering cutting-edge memory solutions to meet the evolving demands of the electronics industry.