Chapter 9 Configuring IEEE 802.1Q Tunneling and Layer 2 Protocol Tunneling on the ML-Series Card

Understanding IEEE 802.1Q Tunneling

Figure 9-2 Normal, IEEE 802.1Q, and IEEE 802.1Q-Tunneled Ethernet Packet Formats

 

Source

 

 

 

 

 

 

 

address

 

 

 

 

 

 

Destination

Length/

 

Frame Check

 

address

EtherType

 

 

Sequence

 

 

 

 

 

 

 

 

 

Original Ethernet frame

 

DA

SA

 

Len/Etype

Data

 

FCS

 

 

 

 

 

 

 

 

 

 

 

DA

SA

Etype

Tag

Len/Etype

Data

FCS

IEE 802.1Q frame from customer network

DA

SA

Etype

Tag

Etype

Tag

Len/Etype

Data

FCS

74072

Double-tagged frame in service provider infrastructure

When the packet enters the trunk port of the service-provider egress switch, the outer tag is again stripped as the packet is processed internally on the switch. However, the metro tag is not added when it is sent out the tunnel port on the edge switch into the customer network, and the packet is sent as a normal IEEE 802.1Q-tagged frame to preserve the original VLAN numbers in the customer network.

In Figure 9-1 on page 9-2, Customer A was assigned VLAN 30, and Customer B was assigned

VLAN 40. Packets entering the ML-Series card tunnel ports with IEEE 802.1Q tags are double-tagged when they enter the service-provider network, with the outer tag containing VLAN ID 30 or 40, appropriately, and the inner tag containing the original VLAN number, for example, VLAN 100. Even if both Customers A and B have VLAN 100 in their networks, the traffic remains segregated within the service-provider network because the outer tag is different. With IEEE 802.1Q tunneling, each customer controls its own VLAN numbering space, which is independent of the VLAN numbering space used by other customers and the VLAN numbering space used by the service-provider network.

At the outbound tunnel port, the original VLAN numbers on the customer’s network are recovered. If the traffic coming from a customer network is not tagged (native VLAN frames), these packets are bridged or routed as if they were normal packets, and the metro tag is added (as a single-level tag) when they exit toward the service provider network.

If the native VLAN (VLAN 1) is used in the service provider network as a metro tag, this tag must always be added to the customer traffic, even though the native VLAN ID is not normally added to transmitted frames. If the VLAN 1 metro tag is not added on frames entering the service provider network, then the customer VLAN tag appears to be the metro tag, with disastrous results. The global configuration vlan dot1q tag native command must be used to prevent this by forcing a tag to be added to VLAN 1.

Avoiding the use of VLAN 1 as a metro tag transporting customer traffic is recommended to reduce the risk of misconfiguration. A best practice is to use VLAN 1 as a private management VLAN in the service provider network.

The IEEE 802.1Q class of service (COS) priority field on the added metro tag is set to zero by default, but can be modified by input or output policy maps.

Cisco ONS 15310-CL, ONS 15310-MA, and ONS 15310-MA SDH Ethernet Card Software Feature and Configuration Guide, R9.1 and R9.2

 

78-19415-01

9-3

 

 

 

Page 105
Image 105
Cisco Systems ONS 15310-CL, Cisco ONS 15310-MA manual Fcs

ONS 15310-CL, ONS 15310-MA, Cisco ONS 15310-MA specifications

Cisco Systems has long been a leader in networking and telecommunications technology, and among its impressive lineup of products, the Cisco ONS 15310 series stands out as an essential solution for optical networking. This series includes models such as the ONS 15310-MA, ONS 15310-CL, and ONS 15310-CA, each designed to meet the diverse needs of service providers and enterprises seeking to enhance their optical transport networks.

The Cisco ONS 15310-MA is an advanced multi-service platform designed for metropolitan area networks. It facilitates the seamless transport of data, voice, and video over optical networks. One of its main features is its ability to support a variety of interfaces, including Ethernet, SONET/SDH, and Wavelength Division Multiplexing (WDM), allowing users to integrate multiple services into a single platform. Additionally, the ONS 15310-MA supports advanced traffic management and Quality of Service (QoS) features to prioritize critical applications and ensure consistent performance.

The ONS 15310-CL variant is tailored for more specific applications, providing enhanced capabilities aimed at delivering carrier-grade services. It features a robust architecture that accommodates high-capacity traffic without compromising reliability. This model emphasizes low power consumption and a compact design, making it suitable for deployment in space-constrained environments. The ONS 15310-CL also supports a wide range of optical interfaces, making it highly flexible for various network configurations.

In terms of technologies, the Cisco ONS 15310 series leverages Optical Transport Network (OTN) capabilities, providing high efficiency and greater bandwidth utilization. OTN technology enables efficient error correction and adds resilience to the network through its built-in protection mechanisms. Furthermore, the series supports seamless integration with existing IP/MPLS networks, creating a cohesive infrastructure as organizations evolve their networking requirements.

One of the defining characteristics of the ONS 15310 series is its focus on scalability. Network operators can start with a modest deployment and gradually expand capacity as demand grows. This adaptability is complemented by Cisco's comprehensive management and monitoring tools, providing operators with real-time insights into network performance and facilitating proactive management.

In conclusion, the Cisco ONS 15310-MA and ONS 15310-CL models represent sophisticated solutions for modern optical networks. With their versatile features, advanced technologies, and robust design, they empower service providers and enterprises to build resilient, high-capacity networks that meet the demands of today’s data-driven world.