Chapter 12 Configuring Quality of Service on the ML-Series Card

ML-Series QoS

ML-Series QoS

The ML-Series QoS classifies each packet in the network based on its input interface, bridge group (VLAN), Ethernet CoS, IP precedence, IP DSCP, or resilient packet ring (RPR)-CoS. After they are classified into class flows, further QoS functions can be applied to each packet as it traverses the card. Figure 12-3illustrates the ML-Series QoS flow.

Figure 12-3 ML-Series QoS Flow

 

QoS Actions at Ingress

 

Classification

Policing & Marking

Classification

QoS Actions at Egress

Queueing & Scheduleing

96498

Policing provided by the ML-Series card ensures that attached equipment does not submit more than a predefined amount of bandwidth (Rate Limiting) into the network. The policing feature can be used to enforce the committed information rate (CIR) and the peak information rate (PIR) available to a customer at an interface. Policing also helps characterize the statistical nature of the information allowed into the network so that traffic engineering can more effectively ensure that the amount of committed bandwidth is available on the network, and the peak bandwidth is over-subscribed with an appropriate ratio. The policing action is applied per classification.

Priority marking can set the Ethernet IEEE 802.1p CoS bits or RPR-CoS bits as they exit the ML-Series card. The marking feature operates on the outer IEEE 802.1p tag, and provides a mechanism for tagging packets at the ingress of a QinQ packet. The subsequent network elements can provide QoS based only on this service-provider-created QoS indicator.

Per-class flow queuing enables fair access to excess network bandwidth, allows allocation of bandwidth to support SLAs, and ensures that applications with high network resource requirements are adequately served. Buffers are allocated to queues dynamically from a shared resource pool. The allocation process incorporates the instantaneous system load as well as the allocated bandwidth to each queue to optimize buffer allocation. Congestion management on the ML-Series is performed through a tail drop mechanism along with discard eligibility on the egress scheduler.

The ML-Series uses a Weighted Deficit Round Robin (WDRR) scheduling process to provide fair access to excess bandwidth as well as guaranteed throughput to each class flow.

Admission control is a process that is invoked each time that service is configured on the ML-Series card to ensure that QoS resources are not overcommitted. In particular, admission control ensures that no configurations are accepted when the sum of committed bandwidths on an interface exceeds the total bandwidth on the interface.

Classification

Classification can be based on any single packet classification criteria or a combination (logical AND and OR). Classification of packets is configured using the Modular CLI class-mapcommand. For traffic transiting the RPR, only the input interface and/or the RPR-CoS can be used as classification criteria.

Cisco ONS 15310-CL, ONS 15310-MA, and ONS 15310-MA SDH Ethernet Card Software Feature and Configuration Guide, R9.1 and R9.2

12-4

78-19415-01

 

 

Page 134
Image 134
Cisco Systems Cisco ONS 15310-MA, ONS 15310-CL manual ML-Series QoS, Classification, 12-4

ONS 15310-CL, ONS 15310-MA, Cisco ONS 15310-MA specifications

Cisco Systems has long been a leader in networking and telecommunications technology, and among its impressive lineup of products, the Cisco ONS 15310 series stands out as an essential solution for optical networking. This series includes models such as the ONS 15310-MA, ONS 15310-CL, and ONS 15310-CA, each designed to meet the diverse needs of service providers and enterprises seeking to enhance their optical transport networks.

The Cisco ONS 15310-MA is an advanced multi-service platform designed for metropolitan area networks. It facilitates the seamless transport of data, voice, and video over optical networks. One of its main features is its ability to support a variety of interfaces, including Ethernet, SONET/SDH, and Wavelength Division Multiplexing (WDM), allowing users to integrate multiple services into a single platform. Additionally, the ONS 15310-MA supports advanced traffic management and Quality of Service (QoS) features to prioritize critical applications and ensure consistent performance.

The ONS 15310-CL variant is tailored for more specific applications, providing enhanced capabilities aimed at delivering carrier-grade services. It features a robust architecture that accommodates high-capacity traffic without compromising reliability. This model emphasizes low power consumption and a compact design, making it suitable for deployment in space-constrained environments. The ONS 15310-CL also supports a wide range of optical interfaces, making it highly flexible for various network configurations.

In terms of technologies, the Cisco ONS 15310 series leverages Optical Transport Network (OTN) capabilities, providing high efficiency and greater bandwidth utilization. OTN technology enables efficient error correction and adds resilience to the network through its built-in protection mechanisms. Furthermore, the series supports seamless integration with existing IP/MPLS networks, creating a cohesive infrastructure as organizations evolve their networking requirements.

One of the defining characteristics of the ONS 15310 series is its focus on scalability. Network operators can start with a modest deployment and gradually expand capacity as demand grows. This adaptability is complemented by Cisco's comprehensive management and monitoring tools, providing operators with real-time insights into network performance and facilitating proactive management.

In conclusion, the Cisco ONS 15310-MA and ONS 15310-CL models represent sophisticated solutions for modern optical networks. With their versatile features, advanced technologies, and robust design, they empower service providers and enterprises to build resilient, high-capacity networks that meet the demands of today’s data-driven world.