Chapter 15 Configuring Resilient Packet Ring on the ML-Series Card

Delete an ML-Series Card from an RPR

Figure 15-10 Two-Node RPR After the Deletion

Adjacent

Node 1

POS 0

POS 1

SPR 1

Deleted Node

POS 1

POS 0

Adjacent

This STS circuit

Node 2

was created after the deletion.

= STS circuit created on CTC

145993

To delete an ML-Series card from the RPR, you need to complete several general actions:

Force away any existing non-ML-Series card circuits, such as DS-1, that use the spans that will be deleted.

Shut down the POS ports on the adjacent ML-Series cards for the STS circuits that will be deleted to initiate the RPR wrap.

Test Ethernet connectivity between the access ports on the existing adjacent ML-Series cards with a test set to ensure that the RPR wrapped successfully.

Delete the two STS circuits that will be replaced by the new circuits. (In Figure 15-9, this is the circuit between the Delete Node and one Adjacent Node, and the circuit between the Delete Node and the other Adjacent Node.)

Remove the Delete Node from the ring topology if desired.

Physically remove the delete ML-Series card from the node if desired.

Create an STS circuit from the available POS port of one of the remaining adjacent ML-Series cards to the available POS port on the other remaining adjacent ML-Series card. (In Figure 15-10, this is the circuit between Adjacent Node 2, POS Port 0 and Adjacent Node 1, POS Port 1.)

Enable the POS ports on the existing adjacent ML-Series cards.(In Figure 15-10, this is the Adjacent Node 2, POS Port 0 and the Adjacent Node 1, POS Port 1.)

Test Ethernet connectivity between the access ports on the adjacent ML-Series card with a test set to validate the two-node RPR.

Monitor Ethernet traffic and existing routing protocols for at least an hour after the node deletion.

Caution The specific steps in the following procedure are for the topology in the example. Your own steps will vary according to your network design. Do not attempt this procedure without obtaining a detailed plan or method of procedure from an experienced network architect.

 

 

 

Cisco ONS 15310-CL, ONS 15310-MA, and ONS 15310-MA SDH Ethernet Card Software Feature and Configuration Guide, R9.1 and R9.2

 

 

 

 

15-22

78-19415-01

 

 

 

Page 194
Image 194
Cisco Systems Cisco ONS 15310-MA, ONS 15310-CL manual 15-22, Two-Node RPR After the Deletion

ONS 15310-CL, ONS 15310-MA, Cisco ONS 15310-MA specifications

Cisco Systems has long been a leader in networking and telecommunications technology, and among its impressive lineup of products, the Cisco ONS 15310 series stands out as an essential solution for optical networking. This series includes models such as the ONS 15310-MA, ONS 15310-CL, and ONS 15310-CA, each designed to meet the diverse needs of service providers and enterprises seeking to enhance their optical transport networks.

The Cisco ONS 15310-MA is an advanced multi-service platform designed for metropolitan area networks. It facilitates the seamless transport of data, voice, and video over optical networks. One of its main features is its ability to support a variety of interfaces, including Ethernet, SONET/SDH, and Wavelength Division Multiplexing (WDM), allowing users to integrate multiple services into a single platform. Additionally, the ONS 15310-MA supports advanced traffic management and Quality of Service (QoS) features to prioritize critical applications and ensure consistent performance.

The ONS 15310-CL variant is tailored for more specific applications, providing enhanced capabilities aimed at delivering carrier-grade services. It features a robust architecture that accommodates high-capacity traffic without compromising reliability. This model emphasizes low power consumption and a compact design, making it suitable for deployment in space-constrained environments. The ONS 15310-CL also supports a wide range of optical interfaces, making it highly flexible for various network configurations.

In terms of technologies, the Cisco ONS 15310 series leverages Optical Transport Network (OTN) capabilities, providing high efficiency and greater bandwidth utilization. OTN technology enables efficient error correction and adds resilience to the network through its built-in protection mechanisms. Furthermore, the series supports seamless integration with existing IP/MPLS networks, creating a cohesive infrastructure as organizations evolve their networking requirements.

One of the defining characteristics of the ONS 15310 series is its focus on scalability. Network operators can start with a modest deployment and gradually expand capacity as demand grows. This adaptability is complemented by Cisco's comprehensive management and monitoring tools, providing operators with real-time insights into network performance and facilitating proactive management.

In conclusion, the Cisco ONS 15310-MA and ONS 15310-CL models represent sophisticated solutions for modern optical networks. With their versatile features, advanced technologies, and robust design, they empower service providers and enterprises to build resilient, high-capacity networks that meet the demands of today’s data-driven world.