C H A P T E R 11

Configuring IRB on the ML-Series Card

This chapter describes how to configure integrated routing and bridging (IRB) for the ML-Series card. For more information about the Cisco IOS commands used in this chapter, refer to the

Cisco IOS Command Reference publication.

This chapter includes the following major sections:

Understanding Integrated Routing and Bridging, page 11-1

Configuring IRB, page 11-2

IRB Configuration Example, page 11-3

Monitoring and Verifying IRB, page 11-4

Caution Cisco Inter-Switch Link (ISL) and Cisco Dynamic Trunking Protocol (DTP) are not supported by the ML-Series, but the ML-Series broadcast forwards these formats. Using ISL or DTP on connecting devices is not recommended. Some Cisco devices attempt to use ISL or DTP by default.

Understanding Integrated Routing and Bridging

Your network might require you to bridge local traffic within several segments and have hosts on the bridged segments reach the hosts or ML-Series card on routed networks. For example, if you are migrating bridged topologies into routed topologies, you might want to start by connecting some of the bridged segments to the routed networks.

Using the integrated routing and bridging (IRB) feature, you can route a given protocol between routed interfaces and bridge groups within a single ML-Series card. Specifically, local or unroutable traffic is bridged among the bridged interfaces in the same bridge group, while routable traffic is routed to other routed interfaces or bridge groups.

Because bridging is in the data link layer and routing is in the network layer, they have different protocol configuration models. With IP, for example, bridge group interfaces belong to the same network and have a collective IP network address. In contrast, each routed interface represents a distinct network and has its own IP network address. It uses the concept of a Bridge Group Virtual Interface (BVI) to enable these interfaces to exchange packets for a given protocol.

A BVI is a virtual interface within the ML-Series card that acts like a normal routed interface. A BVI does not support bridging but actually represents the corresponding bridge group to routed interfaces within the ML-Series card. It also gives the user an IP management interface for the bridge group. The interface number is the link between the BVI and the bridge group.

Cisco ONS 15310-CL, ONS 15310-MA, and ONS 15310-MA SDH Ethernet Card Software Feature and Configuration Guide, R9.1 and R9.2

 

78-19415-01

11-1

 

 

 

Page 125
Image 125
Cisco Systems Cisco ONS 15310-MA Configuring IRB on the ML-Series Card, Understanding Integrated Routing and Bridging

ONS 15310-CL, ONS 15310-MA, Cisco ONS 15310-MA specifications

Cisco Systems has long been a leader in networking and telecommunications technology, and among its impressive lineup of products, the Cisco ONS 15310 series stands out as an essential solution for optical networking. This series includes models such as the ONS 15310-MA, ONS 15310-CL, and ONS 15310-CA, each designed to meet the diverse needs of service providers and enterprises seeking to enhance their optical transport networks.

The Cisco ONS 15310-MA is an advanced multi-service platform designed for metropolitan area networks. It facilitates the seamless transport of data, voice, and video over optical networks. One of its main features is its ability to support a variety of interfaces, including Ethernet, SONET/SDH, and Wavelength Division Multiplexing (WDM), allowing users to integrate multiple services into a single platform. Additionally, the ONS 15310-MA supports advanced traffic management and Quality of Service (QoS) features to prioritize critical applications and ensure consistent performance.

The ONS 15310-CL variant is tailored for more specific applications, providing enhanced capabilities aimed at delivering carrier-grade services. It features a robust architecture that accommodates high-capacity traffic without compromising reliability. This model emphasizes low power consumption and a compact design, making it suitable for deployment in space-constrained environments. The ONS 15310-CL also supports a wide range of optical interfaces, making it highly flexible for various network configurations.

In terms of technologies, the Cisco ONS 15310 series leverages Optical Transport Network (OTN) capabilities, providing high efficiency and greater bandwidth utilization. OTN technology enables efficient error correction and adds resilience to the network through its built-in protection mechanisms. Furthermore, the series supports seamless integration with existing IP/MPLS networks, creating a cohesive infrastructure as organizations evolve their networking requirements.

One of the defining characteristics of the ONS 15310 series is its focus on scalability. Network operators can start with a modest deployment and gradually expand capacity as demand grows. This adaptability is complemented by Cisco's comprehensive management and monitoring tools, providing operators with real-time insights into network performance and facilitating proactive management.

In conclusion, the Cisco ONS 15310-MA and ONS 15310-CL models represent sophisticated solutions for modern optical networks. With their versatile features, advanced technologies, and robust design, they empower service providers and enterprises to build resilient, high-capacity networks that meet the demands of today’s data-driven world.