Chapter 15 Configuring Resilient Packet Ring on the ML-Series Card

Configuring RPR

3.Configuring RPR Characteristics and the SPR Interface on the ML-Series Card, page 15-9(Cisco IOS)

4.Assigning the ML-Series Card POS Ports to the SPR Interface, page 15-11(Cisco IOS)

5.Creating the Bridge Group and Assigning the Ethernet and SPR Interfaces, page 15-13(Cisco IOS)

6.Verifying Ethernet Connectivity Between RPR Ethernet Access Ports, page 15-15(Cisco IOS)

7.CRC Threshold Configuration and Detection, page 15-15

Note Transaction Language One (TL1) can be used to provision the required SONET point-to-point circuits instead of CTC.

Connecting the ML-Series Cards with Point-to-Point STS Circuits

You connect the ML-Series cards in an RPR through point-to-point STS circuits. These circuits use the SONET network and are provisioned using CTC in the normal manner for provisioning optical circuits.

Configuring CTC Circuits for RPR

These are the guidelines for configuring the CTC circuits required by RPR:

Leave all CTC Circuit Creation Wizard options at their default settings, except Fully Protected Path in the Circuit Routing Preferences dialog box. Fully Protected Path provides SONET protection and should be unchecked. RPR normally provides the Layer 2 protection for SPR circuits.

Check Using Required Nodes and Spans to route automatically in the Circuit Routing Preferences dialog box. If the source and destination nodes are adjacent on the ring, exclude all nodes except the source and destination in the Circuit Routing Preferences dialog box. This forces the circuit to be routed directly between source and destination and preserves STS circuits, which would be consumed if the circuit routed through other nodes in the ring. If there is a node or nodes that do not contain an ML-Series card between the two nodes containing ML-Series cards, include this node or nodes in the included nodes area in the Circuit Routing Preference dialog box, along with the source and destination nodes.

Keep in mind that ML-Series card STS circuits do not support unrelated circuit creation options, such as the following check box titles in CTC, unidirectional traffic, creating cross-connects only (TL1-like), interdomain (unified control plane [UCP]), protected drops, subnetwork connection protection (SCNP), or path protectionpath selectors.

A best practice is to configure SONET circuits in an east-to-west or west-to-east configuration, from Port 0 (east) to Port 1 (west) or Port 1 (east) to Port 0 (west), around the SONET ring. Do not configure Port 0 to Port 0 or Port 1 to Port 1. The east-to-west or west-to-east setup is also required in order for the CTM network management software to recognize the ML-Series configuration as an SPR.

Detailed CTC circuit procedures are available in the “Create Circuits and VT Tunnels” chapter of the Cisco ONS 15454 Procedure Guide.

CTC Circuit Configuration Example for RPR

Figure 15-5illustrates an example of a three-node RPR.

Cisco ONS 15310-CL, ONS 15310-MA, and ONS 15310-MA SDH Ethernet Card Software Feature and Configuration Guide, R9.1 and R9.2

 

78-19415-01

15-7

 

 

 

Page 179
Image 179
Cisco Systems Cisco ONS 15310-MA manual Configuring CTC Circuits for RPR, CTC Circuit Configuration Example for RPR, 15-7

ONS 15310-CL, ONS 15310-MA, Cisco ONS 15310-MA specifications

Cisco Systems has long been a leader in networking and telecommunications technology, and among its impressive lineup of products, the Cisco ONS 15310 series stands out as an essential solution for optical networking. This series includes models such as the ONS 15310-MA, ONS 15310-CL, and ONS 15310-CA, each designed to meet the diverse needs of service providers and enterprises seeking to enhance their optical transport networks.

The Cisco ONS 15310-MA is an advanced multi-service platform designed for metropolitan area networks. It facilitates the seamless transport of data, voice, and video over optical networks. One of its main features is its ability to support a variety of interfaces, including Ethernet, SONET/SDH, and Wavelength Division Multiplexing (WDM), allowing users to integrate multiple services into a single platform. Additionally, the ONS 15310-MA supports advanced traffic management and Quality of Service (QoS) features to prioritize critical applications and ensure consistent performance.

The ONS 15310-CL variant is tailored for more specific applications, providing enhanced capabilities aimed at delivering carrier-grade services. It features a robust architecture that accommodates high-capacity traffic without compromising reliability. This model emphasizes low power consumption and a compact design, making it suitable for deployment in space-constrained environments. The ONS 15310-CL also supports a wide range of optical interfaces, making it highly flexible for various network configurations.

In terms of technologies, the Cisco ONS 15310 series leverages Optical Transport Network (OTN) capabilities, providing high efficiency and greater bandwidth utilization. OTN technology enables efficient error correction and adds resilience to the network through its built-in protection mechanisms. Furthermore, the series supports seamless integration with existing IP/MPLS networks, creating a cohesive infrastructure as organizations evolve their networking requirements.

One of the defining characteristics of the ONS 15310 series is its focus on scalability. Network operators can start with a modest deployment and gradually expand capacity as demand grows. This adaptability is complemented by Cisco's comprehensive management and monitoring tools, providing operators with real-time insights into network performance and facilitating proactive management.

In conclusion, the Cisco ONS 15310-MA and ONS 15310-CL models represent sophisticated solutions for modern optical networks. With their versatile features, advanced technologies, and robust design, they empower service providers and enterprises to build resilient, high-capacity networks that meet the demands of today’s data-driven world.